{"title":"Nectar peroxide: assessing variation among plant species, microbial tolerance, and effects on microbial community assembly","authors":"Leta Landucci, Rachel L. Vannette","doi":"10.1111/nph.70050","DOIUrl":null,"url":null,"abstract":"<h2> Introduction</h2>\n<p>Many flowering plants offer energy-dense nectar to attract pollinators. While nectar is an essential attractant for pollinators, it also presents a liability (González-Teuber & Heil, <span>2009</span>; Heil, <span>2011</span>). In addition to transporting pollen, pollinators act as vectors for dispersal-limited bacteria and fungi (Antonovics, <span>2005</span>; Herrera <i>et al</i>., <span>2009</span>; Harper <i>et al</i>., <span>2010</span>; Morris <i>et al</i>., <span>2020</span>). Some are plant pathogens and enter plants via floral tissues (González-Teuber & Heil, <span>2009</span>; Sasu <i>et al</i>., <span>2010</span>; McArt <i>et al</i>., <span>2014</span>) while other microbes primarily reside within floral nectar, a chemically diverse habitat rich in nutrients (Pozo <i>et al</i>., <span>2014</span>; Chappell & Fukami, <span>2018</span>; Adler <i>et al</i>., <span>2021</span>). Microbial growth can modify nectar characteristics including pH, floral scent, sugar ratios and total concentration, amino acids, volume, and temperature, which have been shown to alter pollinator foraging behavior (Herrera <i>et al</i>., <span>2009</span>; Álvarez-Pérez <i>et al</i>., <span>2012</span>; Pozo <i>et al</i>., <span>2014</span>; Aizenberg-Gershtein <i>et al</i>., <span>2015</span>; Schaeffer <i>et al</i>., <span>2017</span>; Rering <i>et al</i>., <span>2018</span>; Vannette & Fukami, <span>2018</span>; de Vega <i>et al</i>., <span>2022</span>). However, many plant traits are hypothesized to protect nectar against potential disadvantageous changes induced by microbes (Adler, <span>2000</span>; Carter & Thornburg, <span>2004</span>). High sugar concentrations reduce the number of bumble bee-vectored yeast species able to survive within the nectar of <i>Helleborus foetidus</i> (Herrera <i>et al</i>., <span>2009</span>). Undetermined chemical properties of nectar also reduce the growth of bacterial wilt in cucumber (Sasu <i>et al</i>., <span>2010</span>).</p>\n<p>These findings suggest the potential adaptive value of nectar antimicrobial mechanisms (Adler, <span>2000</span>; Herrera <i>et al</i>., <span>2009</span>). However, much remains to be understood about the identity of and the mechanisms by which floral nectar components are responsible for reducing microbial growth, and whether strategies are conserved across phylogenetically diverse plant species. Floral nectar is a complex solution of metabolites and molecules in which carbohydrates, vitamins, lipids, amino acids, proteins, inorganic ions, and secondary compounds like alkaloids and phenolics are diverse and, in some cases, abundant (Adler, <span>2000</span>; González-Teuber & Heil, <span>2009</span>; Palmer-Young <i>et al</i>., <span>2019</span>). Alkaloids, proteins, and hydrogen peroxide inhibit microbial growth in nectar or nectar analogs (Aizenberg-Gershtein <i>et al</i>., <span>2015</span>; Schmitt <i>et al</i>., <span>2018</span>, <span>2021</span>; Koch <i>et al</i>., <span>2019</span>; Mueller <i>et al</i>., <span>2023</span>). These findings support the antimicrobial hypothesis, suggesting that specific nectar metabolites may be involved in adaptive defense and filtration of introduced microbes, significantly mediating microbial community composition and assembly in nectar (Adler, <span>2000</span>; Herrera <i>et al</i>., <span>2009</span>; Harper <i>et al</i>., <span>2010</span>; Pozo <i>et al</i>., <span>2014</span>; Stevenson <i>et al</i>., <span>2017</span>; Mueller <i>et al</i>., <span>2023</span>) yet how prevalent such mechanisms may be among plant species is poorly understood.</p>\n<p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is a reactive oxygen species that generates free hydroxyl radicals (<sup>•</sup>HO) in the presence of metal ions. Hydrogen peroxide generation has been proposed to be a major mechanism of antimicrobial defense (Carter & Thornburg, <span>2004</span>; Carter <i>et al</i>., <span>2007</span>) in nectar, and more broadly across host–microbe systems (Allaoui <i>et al</i>., <span>2009</span>; Smirnoff & Arnaud, <span>2019</span>; Miller <i>et al</i>., <span>2020</span>). Indeed, among potential antimicrobial compounds examined in laboratory studies, H<sub>2</sub>O<sub>2</sub> had the broadest inhibitory effect across many microbial species (Mueller <i>et al</i>., <span>2023</span>). In <i>Nicotiana</i>, nectarin proteins including superoxide dismutases and glucose oxidases (GOXs) drive a ‘nectar redox cycle’ that produces hydrogen peroxide and also provides a mechanism for detoxifying the free radicals generated, allowing plants to avoid self-toxicity (Carter & Thornburg, <span>2000</span>, <span>2004</span>; González-Teuber & Heil, <span>2009</span>; Harper <i>et al</i>., <span>2010</span>). Hydrogen peroxide has been detected in the nectar of many species of <i>Nicotiana</i>, ranging between 23.4 and 4000 μM but also at lower levels in <i>Cucurbita</i> and the legumes <i>Mucuna</i> and <i>Robinia</i> (Table 1) (Carter & Thornburg, <span>2000</span>; Bezzi <i>et al</i>., <span>2010</span>; Liu <i>et al</i>., <span>2013</span>; Nocentini & Guarnieri, <span>2014</span>; Silva <i>et al</i>., <span>2018</span>). However, whether antimicrobial levels of peroxide are also found broadly in the nectar of phylogenetically diverse plant species remains unknown. Hydrogen peroxide is also a common antimicrobial defense used by bees, found at high levels in bee-related habitats including the honey food stores of social Hymenoptera, produced via bee-secreted GOX proteins (Burgett, <span>1974</span>).</p>\n<div>\n<header><span>Table 1. </span>Peroxide concentrations measured in nectar from 58 different floral species spanning 25 families, both in this study and reported in the literature.</header>\n<div tabindex=\"0\">\n<table>\n<thead>\n<tr>\n<th>Family</th>\n<th>Species</th>\n<th>Range peroxide (μM)</th>\n<th>Mean peroxide (μM)</th>\n<th colspan=\"2\">Var</th>\n<th><i>N</i></th>\n<th>Assay method</th>\n<th>Study</th>\n<td></td>\n</tr>\n</thead>\n<tbody>\n<tr>\n<td><i>Acanthaceae</i></td>\n<td><i>Ruellia simplex</i></td>\n<td>300–3000</td>\n<td>1000</td>\n<td>–</td>\n<td rowspan=\"3\"></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Apocynaceae</i></td>\n<td><i>Amsonia tabernaemontana</i></td>\n<td>< 15–60</td>\n<td>30</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Asparagaceae</i></td>\n<td><i>Hesperaloe parviflora</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"3\"><i>Asphodelaceae</i></td>\n<td><i>Aloe</i> sp. 1</td>\n<td>11–19</td>\n<td>15</td>\n<td>±4</td>\n<td rowspan=\"2\">SD</td>\n<td>3</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Aloe</i> sp. 2</td>\n<td>7–19</td>\n<td>12</td>\n<td>±5</td>\n<td>8</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Kniphofia</i></td>\n<td>15</td>\n<td>15</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"7\"><i>Bignoniaceae</i></td>\n<td><i>Chilopsis linearis</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td></td>\n<td rowspan=\"3\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cerinethe major</i></td>\n<td>24</td>\n<td>24</td>\n<td>–</td>\n<td>1</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cynoglossum grande</i></td>\n<td>30–150</td>\n<td>70</td>\n<td>–</td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Echium candicans</i></td>\n<td>3–7</td>\n<td>5</td>\n<td>±7</td>\n<td>SD</td>\n<td>2</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phacelia heterophylla</i></td>\n<td>200–300</td>\n<td>300</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phacelia hydrophylloides</i></td>\n<td>300</td>\n<td>300</td>\n<td>–</td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phacelia tanacetifolia</i></td>\n<td>16–57</td>\n<td>29</td>\n<td>±16</td>\n<td>SD</td>\n<td>5</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Brassicaceae</i></td>\n<td><i>Brassica oleracea</i></td>\n<td>32–131</td>\n<td>69</td>\n<td>±34</td>\n<td>SD</td>\n<td>3</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Erysimum capitatum</i></td>\n<td>< 15–15</td>\n<td>5</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Caprifoliaceae</i></td>\n<td><i>Lonicera japonica</i></td>\n<td>300</td>\n<td>300</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cleomaceae</i></td>\n<td><i>Cleomella arborea</i></td>\n<td>7–43</td>\n<td>23</td>\n<td>±12</td>\n<td>SD</td>\n<td>12</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Crassulaceae</i></td>\n<td><i>Cotyledon orbiculata var. engleri</i></td>\n<td>7–134</td>\n<td>59</td>\n<td>±36</td>\n<td>SD</td>\n<td>20</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Cucurbitaceae</i></td>\n<td><i>Cucurbita pepo</i></td>\n<td>3–296</td>\n<td>61</td>\n<td>±75.5</td>\n<td>SD</td>\n<td>16</td>\n<td>FOX method*</td>\n<td>Nocentini (<span>2015</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Ericaceae</i></td>\n<td><i>Arbutus unedo</i></td>\n<td>1500</td>\n<td>1500</td>\n<td>–</td>\n<td rowspan=\"2\">SD</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Arctostaphylos</i> sp.</td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"4\">Fabaceae</td>\n<td><i>Calliandra eriophylla</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Erythrina crista-galli</i></td>\n<td>15</td>\n<td>15</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Mucuna sempervirens</i></td>\n<td>–</td>\n<td>68.4</td>\n<td>±10.7</td>\n<td rowspan=\"2\">SD</td>\n<td>30</td>\n<td>Beyotime kit*</td>\n<td>Liu (<span>2013</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Robinia pseudoacacia</i></td>\n<td>–</td>\n<td>48.8</td>\n<td>±0.9</td>\n<td>3</td>\n<td>Carter, 2000 method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Francoaceae</i></td>\n<td><i>Melianthus comosus</i></td>\n<td>22</td>\n<td>22</td>\n<td>–</td>\n<td>SD</td>\n<td>1</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Grossulariaceae</i></td>\n<td><i>Ribes cereum</i></td>\n<td>< 15–15</td>\n<td>5</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"3\"><i>Lamiaceae</i></td>\n<td><i>Mondardella odoratissima</i></td>\n<td>15–500</td>\n<td>200</td>\n<td>–</td>\n<td></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Salvia mellifera</i></td>\n<td>13.1</td>\n<td>13.1</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>1</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phlomis fruticosa</i></td>\n<td>< 1</td>\n<td>ND (< 1)</td>\n<td>–</td>\n<td>36</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"7\"><i>Onagraceae</i></td>\n<td><i>Clarkia unguiculata</i></td>\n<td>3–13</td>\n<td>7</td>\n<td>±4</td>\n<td>SD</td>\n<td>3</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Clarkia unguiculata</i></td>\n<td>< 15–15</td>\n<td>5</td>\n<td>–</td>\n<td></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘silver’</i></td>\n<td>81–162</td>\n<td>103</td>\n<td>±25</td>\n<td rowspan=\"4\">SD</td>\n<td>10</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘canum’</i></td>\n<td>31–99</td>\n<td>72</td>\n<td>±26</td>\n<td>9</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘calistoga’</i></td>\n<td>22–97</td>\n<td>60</td>\n<td>±26</td>\n<td>9</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Epilobium canum ‘everrit’</i></td>\n<td>25–54</td>\n<td>39</td>\n<td>±9</td>\n<td>10</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Oenothera elata</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Orobanchaceae</i></td>\n<td><i>Castilleja applegatei</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Castilleja miniata</i></td>\n<td>15–60</td>\n<td>30</td>\n<td>–</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phrymaceae</i></td>\n<td><i>Diplacus aurantiacus</i></td>\n<td>< 15–15</td>\n<td>10</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"6\"><i>Plantaginaceae</i></td>\n<td><i>Gambelia speciosa</i></td>\n<td>15</td>\n<td>15</td>\n<td>–</td>\n<td rowspan=\"2\">SD</td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon centranthifolius</i></td>\n<td>9–21</td>\n<td>15</td>\n<td>±4</td>\n<td>10</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon gracilentus</i></td>\n<td>60–150</td>\n<td>100</td>\n<td>–</td>\n<td></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon heterophyllus</i></td>\n<td>4–24</td>\n<td>18</td>\n<td>±7</td>\n<td>SD</td>\n<td>8</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon heterophyllus</i></td>\n<td>30</td>\n<td>30</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Penstemon speciosus</i></td>\n<td>60–300</td>\n<td>190</td>\n<td>–</td>\n<td>7</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\"><i>Polemoniaceae</i></td>\n<td><i>Ipomopsis aggregata</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Phlox diffusa</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\">Ranunculaceae</td>\n<td><i>Aquilegia formosa</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td rowspan=\"2\"></td>\n<td>3</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Delphinium gracilentum</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td>2</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"2\">Sapindaceae</td>\n<td><i>Aesculus californica</i></td>\n<td>7–14</td>\n<td>11</td>\n<td>±3</td>\n<td>SD</td>\n<td>4</td>\n<td>Amplex Red kit*</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Aesculus californica</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td></td>\n<td>1</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td><i>Scrophulariaceae</i></td>\n<td><i>Russelia equisetiformis</i></td>\n<td>< 15</td>\n<td>ND (< 15)</td>\n<td>–</td>\n<td></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n<tr>\n<td rowspan=\"11\"><i>Solanaceae</i></td>\n<td><i>Nicotiana alata</i></td>\n<td>–</td>\n<td>673</td>\n<td>±41.55</td>\n<td>SD</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana attenuata</i></td>\n<td>–</td>\n<td>116.2</td>\n<td>±17.3</td>\n<td rowspan=\"2\">SE</td>\n<td>7</td>\n<td>Luminal chemiluminescence method*</td>\n<td>Bezzi (<span>2010</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana attenuata</i></td>\n<td>–</td>\n<td>23.4</td>\n<td>±1.86</td>\n<td>7</td>\n<td>Amplex Red kit*</td>\n<td>Bezzi (<span>2010</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana benthamiana</i></td>\n<td>–</td>\n<td>288</td>\n<td>±50.5</td>\n<td rowspan=\"7\">SD</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana bonariensis</i></td>\n<td>–</td>\n<td>1840</td>\n<td>±8.90</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana clevelandii</i></td>\n<td>–</td>\n<td>869</td>\n<td>±136</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana glauca</i></td>\n<td>–</td>\n<td>407</td>\n<td>±184</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana langsdorffii</i></td>\n<td>–</td>\n<td>833</td>\n<td>±127</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana rustica</i></td>\n<td>–</td>\n<td>2140</td>\n<td>±582</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana sylvestris</i></td>\n<td>–</td>\n<td>543</td>\n<td>±50.5</td>\n<td>3</td>\n<td>FOX method*</td>\n<td>Silva (<span>2018</span>)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Nicotiana</i> sp.</td>\n<td>< 20–> 4000</td>\n<td>771</td>\n<td>–</td>\n<td></td>\n<td>10</td>\n<td>Carter, 2000 method*</td>\n<td>Carter (2000)</td>\n<td style=\"background-color:#747474\"></td>\n</tr>\n<tr>\n<td><i>Verbenaceae</i></td>\n<td><i>Lantana montevidensis</i></td>\n<td>30–1500</td>\n<td>600</td>\n<td>–</td>\n<td></td>\n<td>4</td>\n<td>Peroxide test strip</td>\n<td>Current</td>\n<td style=\"background-color:#138687\"></td>\n</tr>\n</tbody>\n</table>\n</div>\n<div>\n<ul>\n<li> In the current study (45 species; 23 families), nectar samples from individual flowers were pooled to provide sufficient volume for either Amplex Red hydrogen peroxide or colorimetric test strip peroxide detection assays. SD and SE are abbreviations for standard deviation and standard error, respectively. For the Amplex Red assay, the limit of detection (LOD) is 50 nM, while our limit of quantification (LOQ) is 1 μM. Meanwhile, for the test strip assay, the LOD and LOQ are both 0.5 ppm (15 μM). Plant species that we sampled in the present study are colored blue, while those from the literature are indicated in gray. Additionally, species for which hydrogen peroxide (as opposed to peroxide, generally) was specifically measured are marked with an * in the ‘Assay Method’ column. </li>\n</ul>\n</div>\n<div></div>\n</div>\n<p>Concentrations of hydrogen peroxide at and above 2000 μM have been shown to reduce the growth of some common plant pathogens and yeasts, and bacteria isolated from nectar, pollinators, and the environment (Carter & Thornburg, <span>2004</span>; Carter <i>et al</i>., <span>2007</span>; Mueller <i>et al</i>., <span>2023</span>). However, some microbes may tolerate high hydrogen peroxide concentrations (Herrera <i>et al</i>., <span>2009</span>; Álvarez-Pérez <i>et al</i>., <span>2012</span>; Vannette <i>et al</i>., 2013), including the nectar-specialist yeast <i>Metschnikowia reukaufii</i>. Catalases defend against oxidative stress by catalyzing the decomposition of hydrogen peroxide, detoxifying the environment and potentially making it more favorable for microbial growth (Vannette <i>et al</i>., 2013; de Vega <i>et al</i>., <span>2022</span>), for both the catalase producer and possibly co-occurring microbes (Mueller <i>et al</i>., <span>2023</span>). This has yet to be evaluated in the complex and dynamic nectar environment of living flowers, or at concentrations of hydrogen peroxide lower than 2000 μM. Investigating whether lower concentrations of hydrogen peroxide, which may be more commonly found in nectar, are also antimicrobial is necessary to assess the range of efficacy. Additionally, evaluating microbial taxa that are specialized to nectar and pollinator-associated environments and grow within a community, rather than as individual isolates, will be necessary to assess the range of conditions under which hydrogen peroxide may be an effective defense.</p>\n<p>Here, we assess the generality of hydrogen peroxide as a potential antimicrobial compound in floral nectar, including its inducibility and variation in microbial tolerance and compositional response to peroxide. In Aim 1, we surveyed 45 plant species and compiled previous values for 13 additional species from the literature, spanning 25 families to measure the range of nectar peroxide concentration and examine if plant phylogeny predicts hydrogen peroxide concentration. In Aim 2, we assessed if plant defense hormones methyl salicylate (Me-SA) and methyl jasmonate (Me-JA) induce hydrogen peroxide upregulation in nectar. Salicylic acid plays a central role in priming plant defenses against potential microbial pathogens, and we predicted that this could lead to increased nectar defenses and a possible mode of hydrogen peroxide regulation against microbes introduced into nectar. Methyl jasmonate, while typically associated with defense responses to herbivory and tissue damage, has also been found to mediate floral trait expression as well as plant traits that affect microbial growth (Pak <i>et al</i>., <span>2009</span>; Zuñiga <i>et al</i>., <span>2020</span>). Next, we assessed microbial responses to field-relevant concentrations of hydrogen peroxide. We approached this question from multiple perspectives. In Aim 3, we tested how yeast identity or isolation source, including bee, floral tissue, and nectar-associated habitats, impacts tolerance to hydrogen peroxide using <i>in vitro</i> assays. Next, in Aim 4, we examined how enzyme-increased hydrogen peroxide in the field shapes microbial community assembly in nectar. Finally, in Aim 5, we examined how individual vs community context determines microbial growth and effects on hydrogen peroxide concentration using lab assays. We predicted that differences we might observe could be mediated by microbial competition or the benefits of co-growth, where the detoxification of hydrogen peroxide by more tolerant microbes could facilitate improved growth of less resilient microbes.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"6 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70050","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Nectar peroxide: assessing variation among plant species, microbial tolerance, and effects on microbial community assembly
Introduction
Many flowering plants offer energy-dense nectar to attract pollinators. While nectar is an essential attractant for pollinators, it also presents a liability (González-Teuber & Heil, 2009; Heil, 2011). In addition to transporting pollen, pollinators act as vectors for dispersal-limited bacteria and fungi (Antonovics, 2005; Herrera et al., 2009; Harper et al., 2010; Morris et al., 2020). Some are plant pathogens and enter plants via floral tissues (González-Teuber & Heil, 2009; Sasu et al., 2010; McArt et al., 2014) while other microbes primarily reside within floral nectar, a chemically diverse habitat rich in nutrients (Pozo et al., 2014; Chappell & Fukami, 2018; Adler et al., 2021). Microbial growth can modify nectar characteristics including pH, floral scent, sugar ratios and total concentration, amino acids, volume, and temperature, which have been shown to alter pollinator foraging behavior (Herrera et al., 2009; Álvarez-Pérez et al., 2012; Pozo et al., 2014; Aizenberg-Gershtein et al., 2015; Schaeffer et al., 2017; Rering et al., 2018; Vannette & Fukami, 2018; de Vega et al., 2022). However, many plant traits are hypothesized to protect nectar against potential disadvantageous changes induced by microbes (Adler, 2000; Carter & Thornburg, 2004). High sugar concentrations reduce the number of bumble bee-vectored yeast species able to survive within the nectar of Helleborus foetidus (Herrera et al., 2009). Undetermined chemical properties of nectar also reduce the growth of bacterial wilt in cucumber (Sasu et al., 2010).
These findings suggest the potential adaptive value of nectar antimicrobial mechanisms (Adler, 2000; Herrera et al., 2009). However, much remains to be understood about the identity of and the mechanisms by which floral nectar components are responsible for reducing microbial growth, and whether strategies are conserved across phylogenetically diverse plant species. Floral nectar is a complex solution of metabolites and molecules in which carbohydrates, vitamins, lipids, amino acids, proteins, inorganic ions, and secondary compounds like alkaloids and phenolics are diverse and, in some cases, abundant (Adler, 2000; González-Teuber & Heil, 2009; Palmer-Young et al., 2019). Alkaloids, proteins, and hydrogen peroxide inhibit microbial growth in nectar or nectar analogs (Aizenberg-Gershtein et al., 2015; Schmitt et al., 2018, 2021; Koch et al., 2019; Mueller et al., 2023). These findings support the antimicrobial hypothesis, suggesting that specific nectar metabolites may be involved in adaptive defense and filtration of introduced microbes, significantly mediating microbial community composition and assembly in nectar (Adler, 2000; Herrera et al., 2009; Harper et al., 2010; Pozo et al., 2014; Stevenson et al., 2017; Mueller et al., 2023) yet how prevalent such mechanisms may be among plant species is poorly understood.
Hydrogen peroxide (H2O2) is a reactive oxygen species that generates free hydroxyl radicals (•HO) in the presence of metal ions. Hydrogen peroxide generation has been proposed to be a major mechanism of antimicrobial defense (Carter & Thornburg, 2004; Carter et al., 2007) in nectar, and more broadly across host–microbe systems (Allaoui et al., 2009; Smirnoff & Arnaud, 2019; Miller et al., 2020). Indeed, among potential antimicrobial compounds examined in laboratory studies, H2O2 had the broadest inhibitory effect across many microbial species (Mueller et al., 2023). In Nicotiana, nectarin proteins including superoxide dismutases and glucose oxidases (GOXs) drive a ‘nectar redox cycle’ that produces hydrogen peroxide and also provides a mechanism for detoxifying the free radicals generated, allowing plants to avoid self-toxicity (Carter & Thornburg, 2000, 2004; González-Teuber & Heil, 2009; Harper et al., 2010). Hydrogen peroxide has been detected in the nectar of many species of Nicotiana, ranging between 23.4 and 4000 μM but also at lower levels in Cucurbita and the legumes Mucuna and Robinia (Table 1) (Carter & Thornburg, 2000; Bezzi et al., 2010; Liu et al., 2013; Nocentini & Guarnieri, 2014; Silva et al., 2018). However, whether antimicrobial levels of peroxide are also found broadly in the nectar of phylogenetically diverse plant species remains unknown. Hydrogen peroxide is also a common antimicrobial defense used by bees, found at high levels in bee-related habitats including the honey food stores of social Hymenoptera, produced via bee-secreted GOX proteins (Burgett, 1974).
Table 1. Peroxide concentrations measured in nectar from 58 different floral species spanning 25 families, both in this study and reported in the literature.
Family
Species
Range peroxide (μM)
Mean peroxide (μM)
Var
N
Assay method
Study
Acanthaceae
Ruellia simplex
300–3000
1000
–
4
Peroxide test strip
Current
Apocynaceae
Amsonia tabernaemontana
< 15–60
30
–
3
Peroxide test strip
Current
Asparagaceae
Hesperaloe parviflora
< 15
ND (< 15)
–
4
Peroxide test strip
Current
Asphodelaceae
Aloe sp. 1
11–19
15
±4
SD
3
Amplex Red kit*
Current
Aloe sp. 2
7–19
12
±5
8
Amplex Red kit*
Current
Kniphofia
15
15
–
3
Peroxide test strip
Current
Bignoniaceae
Chilopsis linearis
< 15
ND (< 15)
3
Peroxide test strip
Current
Cerinethe major
24
24
–
1
Amplex Red kit*
Current
Cynoglossum grande
30–150
70
–
4
Peroxide test strip
Current
Echium candicans
3–7
5
±7
SD
2
Amplex Red kit*
Current
Phacelia heterophylla
200–300
300
–
3
Peroxide test strip
Current
Phacelia hydrophylloides
300
300
–
2
Peroxide test strip
Current
Phacelia tanacetifolia
16–57
29
±16
SD
5
Amplex Red kit*
Current
Brassicaceae
Brassica oleracea
32–131
69
±34
SD
3
Amplex Red kit*
Current
Erysimum capitatum
< 15–15
5
–
3
Peroxide test strip
Current
Caprifoliaceae
Lonicera japonica
300
300
–
2
Peroxide test strip
Current
Cleomaceae
Cleomella arborea
7–43
23
±12
SD
12
Amplex Red kit*
Current
Crassulaceae
Cotyledon orbiculata var. engleri
7–134
59
±36
SD
20
Amplex Red kit*
Current
Cucurbitaceae
Cucurbita pepo
3–296
61
±75.5
SD
16
FOX method*
Nocentini (2015)
Ericaceae
Arbutus unedo
1500
1500
–
SD
3
Peroxide test strip
Current
Arctostaphylos sp.
< 15
ND (< 15)
–
3
Peroxide test strip
Current
Fabaceae
Calliandra eriophylla
< 15
ND (< 15)
–
3
Peroxide test strip
Current
Erythrina crista-galli
15
15
–
3
Peroxide test strip
Current
Mucuna sempervirens
–
68.4
±10.7
SD
30
Beyotime kit*
Liu (2013)
Robinia pseudoacacia
–
48.8
±0.9
3
Carter, 2000 method*
Silva (2018)
Francoaceae
Melianthus comosus
22
22
–
SD
1
Amplex Red kit*
Current
Grossulariaceae
Ribes cereum
< 15–15
5
–
3
Peroxide test strip
Current
Lamiaceae
Mondardella odoratissima
15–500
200
–
3
Peroxide test strip
Current
Salvia mellifera
13.1
13.1
–
1
Amplex Red kit*
Current
Phlomis fruticosa
< 1
ND (< 1)
–
36
Amplex Red kit*
Current
Onagraceae
Clarkia unguiculata
3–13
7
±4
SD
3
Amplex Red kit*
Current
Clarkia unguiculata
< 15–15
5
–
4
Peroxide test strip
Current
Epilobium canum ‘silver’
81–162
103
±25
SD
10
Amplex Red kit*
Current
Epilobium canum ‘canum’
31–99
72
±26
9
Amplex Red kit*
Current
Epilobium canum ‘calistoga’
22–97
60
±26
9
Amplex Red kit*
Current
Epilobium canum ‘everrit’
25–54
39
±9
10
Amplex Red kit*
Current
Oenothera elata
< 15
ND (< 15)
–
2
Peroxide test strip
Current
Orobanchaceae
Castilleja applegatei
< 15
ND (< 15)
–
1
Peroxide test strip
Current
Castilleja miniata
15–60
30
–
3
Peroxide test strip
Current
Phrymaceae
Diplacus aurantiacus
< 15–15
10
–
2
Peroxide test strip
Current
Plantaginaceae
Gambelia speciosa
15
15
–
SD
3
Peroxide test strip
Current
Penstemon centranthifolius
9–21
15
±4
10
Amplex Red kit*
Current
Penstemon gracilentus
60–150
100
–
2
Peroxide test strip
Current
Penstemon heterophyllus
4–24
18
±7
SD
8
Amplex Red kit*
Current
Penstemon heterophyllus
30
30
–
1
Peroxide test strip
Current
Penstemon speciosus
60–300
190
–
7
Peroxide test strip
Current
Polemoniaceae
Ipomopsis aggregata
< 15
ND (< 15)
–
2
Peroxide test strip
Current
Phlox diffusa
< 15
ND (< 15)
–
1
Peroxide test strip
Current
Ranunculaceae
Aquilegia formosa
< 15
ND (< 15)
–
3
Peroxide test strip
Current
Delphinium gracilentum
< 15
ND (< 15)
–
2
Peroxide test strip
Current
Sapindaceae
Aesculus californica
7–14
11
±3
SD
4
Amplex Red kit*
Current
Aesculus californica
< 15
ND (< 15)
–
1
Peroxide test strip
Current
Scrophulariaceae
Russelia equisetiformis
< 15
ND (< 15)
–
4
Peroxide test strip
Current
Solanaceae
Nicotiana alata
–
673
±41.55
SD
3
FOX method*
Silva (2018)
Nicotiana attenuata
–
116.2
±17.3
SE
7
Luminal chemiluminescence method*
Bezzi (2010)
Nicotiana attenuata
–
23.4
±1.86
7
Amplex Red kit*
Bezzi (2010)
Nicotiana benthamiana
–
288
±50.5
SD
3
FOX method*
Silva (2018)
Nicotiana bonariensis
–
1840
±8.90
3
FOX method*
Silva (2018)
Nicotiana clevelandii
–
869
±136
3
FOX method*
Silva (2018)
Nicotiana glauca
–
407
±184
3
FOX method*
Silva (2018)
Nicotiana langsdorffii
–
833
±127
3
FOX method*
Silva (2018)
Nicotiana rustica
–
2140
±582
3
FOX method*
Silva (2018)
Nicotiana sylvestris
–
543
±50.5
3
FOX method*
Silva (2018)
Nicotiana sp.
< 20–> 4000
771
–
10
Carter, 2000 method*
Carter (2000)
Verbenaceae
Lantana montevidensis
30–1500
600
–
4
Peroxide test strip
Current
In the current study (45 species; 23 families), nectar samples from individual flowers were pooled to provide sufficient volume for either Amplex Red hydrogen peroxide or colorimetric test strip peroxide detection assays. SD and SE are abbreviations for standard deviation and standard error, respectively. For the Amplex Red assay, the limit of detection (LOD) is 50 nM, while our limit of quantification (LOQ) is 1 μM. Meanwhile, for the test strip assay, the LOD and LOQ are both 0.5 ppm (15 μM). Plant species that we sampled in the present study are colored blue, while those from the literature are indicated in gray. Additionally, species for which hydrogen peroxide (as opposed to peroxide, generally) was specifically measured are marked with an * in the ‘Assay Method’ column.
Concentrations of hydrogen peroxide at and above 2000 μM have been shown to reduce the growth of some common plant pathogens and yeasts, and bacteria isolated from nectar, pollinators, and the environment (Carter & Thornburg, 2004; Carter et al., 2007; Mueller et al., 2023). However, some microbes may tolerate high hydrogen peroxide concentrations (Herrera et al., 2009; Álvarez-Pérez et al., 2012; Vannette et al., 2013), including the nectar-specialist yeast Metschnikowia reukaufii. Catalases defend against oxidative stress by catalyzing the decomposition of hydrogen peroxide, detoxifying the environment and potentially making it more favorable for microbial growth (Vannette et al., 2013; de Vega et al., 2022), for both the catalase producer and possibly co-occurring microbes (Mueller et al., 2023). This has yet to be evaluated in the complex and dynamic nectar environment of living flowers, or at concentrations of hydrogen peroxide lower than 2000 μM. Investigating whether lower concentrations of hydrogen peroxide, which may be more commonly found in nectar, are also antimicrobial is necessary to assess the range of efficacy. Additionally, evaluating microbial taxa that are specialized to nectar and pollinator-associated environments and grow within a community, rather than as individual isolates, will be necessary to assess the range of conditions under which hydrogen peroxide may be an effective defense.
Here, we assess the generality of hydrogen peroxide as a potential antimicrobial compound in floral nectar, including its inducibility and variation in microbial tolerance and compositional response to peroxide. In Aim 1, we surveyed 45 plant species and compiled previous values for 13 additional species from the literature, spanning 25 families to measure the range of nectar peroxide concentration and examine if plant phylogeny predicts hydrogen peroxide concentration. In Aim 2, we assessed if plant defense hormones methyl salicylate (Me-SA) and methyl jasmonate (Me-JA) induce hydrogen peroxide upregulation in nectar. Salicylic acid plays a central role in priming plant defenses against potential microbial pathogens, and we predicted that this could lead to increased nectar defenses and a possible mode of hydrogen peroxide regulation against microbes introduced into nectar. Methyl jasmonate, while typically associated with defense responses to herbivory and tissue damage, has also been found to mediate floral trait expression as well as plant traits that affect microbial growth (Pak et al., 2009; Zuñiga et al., 2020). Next, we assessed microbial responses to field-relevant concentrations of hydrogen peroxide. We approached this question from multiple perspectives. In Aim 3, we tested how yeast identity or isolation source, including bee, floral tissue, and nectar-associated habitats, impacts tolerance to hydrogen peroxide using in vitro assays. Next, in Aim 4, we examined how enzyme-increased hydrogen peroxide in the field shapes microbial community assembly in nectar. Finally, in Aim 5, we examined how individual vs community context determines microbial growth and effects on hydrogen peroxide concentration using lab assays. We predicted that differences we might observe could be mediated by microbial competition or the benefits of co-growth, where the detoxification of hydrogen peroxide by more tolerant microbes could facilitate improved growth of less resilient microbes.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.