转移癌细胞在三维微环境中的机械演变

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2025-03-21 DOI:10.1002/smll.202403242
Karlin Hilai, Daniil Grubich, Marcus Akrawi, Hui Zhu, Razanne Zaghloul, Chenjun Shi, Man Do, Dongxiao Zhu, Jitao Zhang
{"title":"转移癌细胞在三维微环境中的机械演变","authors":"Karlin Hilai, Daniil Grubich, Marcus Akrawi, Hui Zhu, Razanne Zaghloul, Chenjun Shi, Man Do, Dongxiao Zhu, Jitao Zhang","doi":"10.1002/smll.202403242","DOIUrl":null,"url":null,"abstract":"Cellular biomechanics plays a critical role in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells’ behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, optical Brillouin microscopy is utilized to longitudinally acquire mechanical images of growing cancerous spheroids over the period of 8 days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, it is demonstrated that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images have been developed, suggesting the mechanical features of cancer cells can potentially serve as a new biomarker in cancer classification and detection.","PeriodicalId":228,"journal":{"name":"Small","volume":"214 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical Evolution of Metastatic Cancer Cells in 3D Microenvironment\",\"authors\":\"Karlin Hilai, Daniil Grubich, Marcus Akrawi, Hui Zhu, Razanne Zaghloul, Chenjun Shi, Man Do, Dongxiao Zhu, Jitao Zhang\",\"doi\":\"10.1002/smll.202403242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular biomechanics plays a critical role in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells’ behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, optical Brillouin microscopy is utilized to longitudinally acquire mechanical images of growing cancerous spheroids over the period of 8 days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, it is demonstrated that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images have been developed, suggesting the mechanical features of cancer cells can potentially serve as a new biomarker in cancer classification and detection.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"214 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202403242\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202403242","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mechanical Evolution of Metastatic Cancer Cells in 3D Microenvironment
Cellular biomechanics plays a critical role in cancer metastasis and tumor progression. Existing studies on cancer cell biomechanics are mostly conducted in flat 2D conditions, where cells’ behavior can differ considerably from those in 3D physiological environments. Despite great advances in developing 3D in vitro models, probing cellular elasticity in 3D conditions remains a major challenge for existing technologies. In this work, optical Brillouin microscopy is utilized to longitudinally acquire mechanical images of growing cancerous spheroids over the period of 8 days. The dense mechanical mapping from Brillouin microscopy enables us to extract spatially resolved and temporally evolving mechanical features that were previously inaccessible. Using an established machine learning algorithm, it is demonstrated that incorporating these extracted mechanical features significantly improves the classification accuracy of cancer cells, from 74% to 95%. Building on this finding, a deep learning pipeline capable of accurately differentiating cancerous spheroids from normal ones solely using Brillouin images have been developed, suggesting the mechanical features of cancer cells can potentially serve as a new biomarker in cancer classification and detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A Glutathione-Responsive System with Prodrug and Sensitization Strategies for Targeted Therapy of Glioma Enhancement Effect of Static Magnetic Field on Bactericidal Activity A Novel Self-Assembled Hole-Transporting Monolayer with Extending Conjugation for Inverted Perovskite Solar Cells Nano-Scale ZrN Film Modified Zn Anode with Ultra-Long Cycle Life Over 5000 H Mechanical Evolution of Metastatic Cancer Cells in 3D Microenvironment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1