IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2025-01-22 DOI:10.1109/TSMC.2025.3526357
Jingwei Lu;Qinglai Wei;Fei-Yue Wang
{"title":"Parallel Control for Nonzero-Sum Games With Completely Unknown Nonlinear Dynamics via Reinforcement Learning","authors":"Jingwei Lu;Qinglai Wei;Fei-Yue Wang","doi":"10.1109/TSMC.2025.3526357","DOIUrl":null,"url":null,"abstract":"This article utilizes parallel control to investigate the problem of continuous-time (CT) nonzero-sum games (NZSGs) for completely unknown nonlinear systems via reinforcement learning (RL), and a parallel control-based NZSG (PNZSG) method is developed without reconstructing unknown dynamics or employing off-policy integral RL (IRL). First, novel dynamic control policies (DCPs) are developed for NZSGs by introducing controls into feedback, and an augmented system with augmented performance indices is constructed to derive the DCPs. Then, we theoretically analyze the effect of the DCPs on the control stability and performance indices, and the optimality of PNZSG is proven to be equivalent to the optimality of the original NZSGs. Subsequently, an IRL technique is employed to achieve the developed PNZSG method, and we show that no prior knowledge of the dynamics of NZSGs is needed to deploy the developed PNZSG method because of the augmented system and performance indices. Finally, numerical examples, including cooperative adaptive cruise control (CACC) of a vehicular platoon, demonstrate the correctness of the developed PNZSG method. The associated code is available at: <uri>https://github.com/lujingweihh/Adaptive-dynamic-programming-algorithms/tree/main/model_free_nonzero_sum_games</uri>.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 4","pages":"2884-2896"},"PeriodicalIF":8.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10849990/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用并行控制技术,通过强化学习(RL)研究了完全未知非线性系统的连续时间(CT)非零和博弈(NZSG)问题,并开发了一种基于并行控制的 NZSG(PNZSG)方法,而无需重建未知动力学或采用非策略积分 RL(IRL)。首先,通过在反馈中引入控制,为 NZSG 开发了新颖的动态控制策略(DCP),并构建了一个具有增强性能指标的增强系统来推导 DCP。然后,我们从理论上分析了 DCP 对控制稳定性和性能指标的影响,并证明 PNZSG 的最优性等同于原始 NZSG 的最优性。随后,我们利用 IRL 技术实现了所开发的 PNZSG 方法,并证明由于系统和性能指标的增强,部署所开发的 PNZSG 方法无需事先了解 NZSG 的动力学知识。最后,包括车辆排的合作自适应巡航控制(CACC)在内的数值示例证明了所开发的 PNZSG 方法的正确性。相关代码请访问:https://github.com/lujingweihh/Adaptive-dynamic-programming-algorithms/tree/main/model_free_nonzero_sum_games。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Control for Nonzero-Sum Games With Completely Unknown Nonlinear Dynamics via Reinforcement Learning
This article utilizes parallel control to investigate the problem of continuous-time (CT) nonzero-sum games (NZSGs) for completely unknown nonlinear systems via reinforcement learning (RL), and a parallel control-based NZSG (PNZSG) method is developed without reconstructing unknown dynamics or employing off-policy integral RL (IRL). First, novel dynamic control policies (DCPs) are developed for NZSGs by introducing controls into feedback, and an augmented system with augmented performance indices is constructed to derive the DCPs. Then, we theoretically analyze the effect of the DCPs on the control stability and performance indices, and the optimality of PNZSG is proven to be equivalent to the optimality of the original NZSGs. Subsequently, an IRL technique is employed to achieve the developed PNZSG method, and we show that no prior knowledge of the dynamics of NZSGs is needed to deploy the developed PNZSG method because of the augmented system and performance indices. Finally, numerical examples, including cooperative adaptive cruise control (CACC) of a vehicular platoon, demonstrate the correctness of the developed PNZSG method. The associated code is available at: https://github.com/lujingweihh/Adaptive-dynamic-programming-algorithms/tree/main/model_free_nonzero_sum_games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Introducing IEEE Collabratec Table of Contents Table of Contents TechRxiv: Share Your Preprint Research With the World! IEEE Transactions on Systems, Man, and Cybernetics: Systems Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1