高性能软磁复合材料的研制:粘结剂、CIP含量和纳米晶合金粉末粒度的影响

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2025-03-28 DOI:10.1007/s10854-025-14606-4
Hsing-I. Hsiang, Liang-Fang Fan
{"title":"高性能软磁复合材料的研制:粘结剂、CIP含量和纳米晶合金粉末粒度的影响","authors":"Hsing-I. Hsiang,&nbsp;Liang-Fang Fan","doi":"10.1007/s10854-025-14606-4","DOIUrl":null,"url":null,"abstract":"<div><p>This study systematically investigates the effects of binder content, carbonyl iron powder (CIP) content, and FeSiAl nanocrystalline powder particle size on the permeability and core loss of soft magnetic composites (SMCs) for power inductor applications. Unlike previous studies that primarily focus on either composition control or magnetic performance optimization, this research integrates both aspects to develop high-performance SMCs with enhanced magnetic efficiency. The permeability and core loss were quantitatively evaluated, and improvements were assessed by comparing different parameter combinations. The optimized composites, incorporating 40–70 wt% CIP and 1.8–5.0 wt% binder, achieved superior permeability (38.2) and low core loss (286 mW/cm<sup>3</sup> at 100 kHz), making them highly suitable for high-frequency power inductors. The results demonstrate that optimizing the binder content, CIP ratio, and nanocrystalline FeSiAl powder particle size significantly enhances magnetic properties while maintaining mechanical integrity. This study provides valuable insights into the development of advanced SMCs, offering practical improvements in energy efficiency for modern electronic devices.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of high-performance soft magnetic composites: influence of binder, CIP content, and nanocrystalline alloy powder size\",\"authors\":\"Hsing-I. Hsiang,&nbsp;Liang-Fang Fan\",\"doi\":\"10.1007/s10854-025-14606-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study systematically investigates the effects of binder content, carbonyl iron powder (CIP) content, and FeSiAl nanocrystalline powder particle size on the permeability and core loss of soft magnetic composites (SMCs) for power inductor applications. Unlike previous studies that primarily focus on either composition control or magnetic performance optimization, this research integrates both aspects to develop high-performance SMCs with enhanced magnetic efficiency. The permeability and core loss were quantitatively evaluated, and improvements were assessed by comparing different parameter combinations. The optimized composites, incorporating 40–70 wt% CIP and 1.8–5.0 wt% binder, achieved superior permeability (38.2) and low core loss (286 mW/cm<sup>3</sup> at 100 kHz), making them highly suitable for high-frequency power inductors. The results demonstrate that optimizing the binder content, CIP ratio, and nanocrystalline FeSiAl powder particle size significantly enhances magnetic properties while maintaining mechanical integrity. This study provides valuable insights into the development of advanced SMCs, offering practical improvements in energy efficiency for modern electronic devices.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 9\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14606-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14606-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地研究了粘结剂含量、羰基铁粉(CIP)含量和fesal纳米晶粉末粒径对功率电感用软磁复合材料(SMCs)磁导率和磁芯损耗的影响。与以往主要关注成分控制或磁性优化的研究不同,本研究将这两个方面整合在一起,开发出具有增强磁性效率的高性能smc。定量评估了渗透率和岩心损失,并通过比较不同参数组合来评估改进情况。优化后的复合材料含有40-70 wt%的CIP和1.8-5.0 wt%的粘合剂,具有优异的磁导率(38.2)和低磁芯损耗(100khz时286 mW/cm3),非常适合用于高频功率电感器。结果表明,优化粘结剂含量、CIP比和纳米晶fesal粉末粒度可显著提高粉体的磁性能,同时保持粉体的机械完整性。这项研究为先进SMCs的发展提供了有价值的见解,为现代电子设备的能源效率提供了实际的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of high-performance soft magnetic composites: influence of binder, CIP content, and nanocrystalline alloy powder size

This study systematically investigates the effects of binder content, carbonyl iron powder (CIP) content, and FeSiAl nanocrystalline powder particle size on the permeability and core loss of soft magnetic composites (SMCs) for power inductor applications. Unlike previous studies that primarily focus on either composition control or magnetic performance optimization, this research integrates both aspects to develop high-performance SMCs with enhanced magnetic efficiency. The permeability and core loss were quantitatively evaluated, and improvements were assessed by comparing different parameter combinations. The optimized composites, incorporating 40–70 wt% CIP and 1.8–5.0 wt% binder, achieved superior permeability (38.2) and low core loss (286 mW/cm3 at 100 kHz), making them highly suitable for high-frequency power inductors. The results demonstrate that optimizing the binder content, CIP ratio, and nanocrystalline FeSiAl powder particle size significantly enhances magnetic properties while maintaining mechanical integrity. This study provides valuable insights into the development of advanced SMCs, offering practical improvements in energy efficiency for modern electronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
An improved unified creep‐plasticity constitutive model for viscoplastic solder materials of electronic packaging subjected to high-strain-rate impact loadings Effects of TiO2 nanoparticles on mechanical and corrosion properties of Cu/SAC305–xTiO2/Cu solder joints: experiments and theoretical calculations Temperature dependencies of dielectric relaxation dynamics in PVDF nanocomposites filled with 2d nanofillers: a comparative study of MoS2 and h-BN filled PVDF Infrared-responsive spherical molybdenum oxide/Cl–Poly(N-methylpyrrole) photocathode for sustainable hydrogen generation from seawater Physical investigation of Au/Si/CuSbS₂/Au heterojunctions grown at various substrate temperatures using oblique angle incidence deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1