大鼠硒缺乏及其解毒功能:慢性膳食镉的影响。

Drug-nutrient interactions Pub Date : 1985-01-01
U Olsson
{"title":"大鼠硒缺乏及其解毒功能:慢性膳食镉的影响。","authors":"U Olsson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Male rats from moderately selenium-deficient dams were fed a Torula yeast-based, selenium-deficient diet for 7 weeks, with or without added supplements of sodium selenite (0.2 ppm selenium) and cadmium chloride (50 ppm cadmium) in the drinking water. Cadmium caused about 10% body-weight loss in selenium-deficient, as well as in supplemented rats. Glutathione peroxidase activity in liver 105,000 g supernatant and in erythrocyte hemolysate from selenium-deficient rats was about 1% and 3%, respectively, of that in supplemented rats. A cadmium-induced decrease of glutathione peroxidase activity was found in erythrocyte and liver preparations from selenium-supplemented rats, while cadmium caused an increase of the liver activity in selenium deficiency. Selenium deficiency per se caused a significant decrease of cytochrome P-450 content, while cadmium treatment did not modify further the content of this enzyme. NADPH-cytochrome c reductase was not changed by selenium regimen or cadmium treatment, while cytochrome b5 was increased on cadmium treatment of the supplemented rat. The microsomal metabolism of N,N-dimethylaniline showed a decrease of the cytochrome P-450-dependent C-oxygenation in selenium-deficient groups. Cadmium treatment had no further significant effect. The flavin-containing monooxygenase, which performs N-oxygenation of N,N-dimethylaniline, was decreased significantly by cadmium treatment in selenium deficiency. Selenium deficiency seems thus to be connected with higher susceptibility to cadmium-induced impairments of liver detoxication functions, although progressive accumulation of cadmium in the liver appears to produce only modest effects.</p>","PeriodicalId":11372,"journal":{"name":"Drug-nutrient interactions","volume":"3 3","pages":"129-40"},"PeriodicalIF":0.0000,"publicationDate":"1985-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenium deficiency and detoxication functions in the rat: effect of chronic dietary cadmium.\",\"authors\":\"U Olsson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Male rats from moderately selenium-deficient dams were fed a Torula yeast-based, selenium-deficient diet for 7 weeks, with or without added supplements of sodium selenite (0.2 ppm selenium) and cadmium chloride (50 ppm cadmium) in the drinking water. Cadmium caused about 10% body-weight loss in selenium-deficient, as well as in supplemented rats. Glutathione peroxidase activity in liver 105,000 g supernatant and in erythrocyte hemolysate from selenium-deficient rats was about 1% and 3%, respectively, of that in supplemented rats. A cadmium-induced decrease of glutathione peroxidase activity was found in erythrocyte and liver preparations from selenium-supplemented rats, while cadmium caused an increase of the liver activity in selenium deficiency. Selenium deficiency per se caused a significant decrease of cytochrome P-450 content, while cadmium treatment did not modify further the content of this enzyme. NADPH-cytochrome c reductase was not changed by selenium regimen or cadmium treatment, while cytochrome b5 was increased on cadmium treatment of the supplemented rat. The microsomal metabolism of N,N-dimethylaniline showed a decrease of the cytochrome P-450-dependent C-oxygenation in selenium-deficient groups. Cadmium treatment had no further significant effect. The flavin-containing monooxygenase, which performs N-oxygenation of N,N-dimethylaniline, was decreased significantly by cadmium treatment in selenium deficiency. Selenium deficiency seems thus to be connected with higher susceptibility to cadmium-induced impairments of liver detoxication functions, although progressive accumulation of cadmium in the liver appears to produce only modest effects.</p>\",\"PeriodicalId\":11372,\"journal\":{\"name\":\"Drug-nutrient interactions\",\"volume\":\"3 3\",\"pages\":\"129-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug-nutrient interactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug-nutrient interactions","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中度缺硒雄性大鼠喂食以托鲁拉酵母为基础的缺硒饲料7周,在饮用水中添加或不添加亚硒酸钠(0.2 ppm硒)和氯化镉(50 ppm镉)。在硒缺乏和硒补充的大鼠中,镉导致体重下降约10%。缺硒大鼠105,000 g肝脏上清液和红细胞溶血液中谷胱甘肽过氧化物酶活性分别约为补硒大鼠的1%和3%。在补硒大鼠红细胞和肝脏制剂中,镉诱导的谷胱甘肽过氧化物酶活性降低,而在缺硒大鼠中,镉引起肝脏活性升高。硒缺乏本身导致细胞色素P-450含量显著降低,而镉处理没有进一步改变该酶的含量。硒组和镉组对nadph -细胞色素c还原酶无明显影响,而镉组细胞色素b5升高。硒缺乏组小鼠微粒体N,N-二甲基苯胺代谢显示细胞色素p -450依赖的c -氧合减少。镉处理没有进一步的显著影响。镉处理显著降低了硒缺乏条件下对N,N-二甲基苯胺进行N-氧合的含黄素单加氧酶的活性。因此,硒缺乏似乎与镉引起的肝脏解毒功能损伤的易感性较高有关,尽管镉在肝脏中的逐渐积累似乎只产生适度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selenium deficiency and detoxication functions in the rat: effect of chronic dietary cadmium.

Male rats from moderately selenium-deficient dams were fed a Torula yeast-based, selenium-deficient diet for 7 weeks, with or without added supplements of sodium selenite (0.2 ppm selenium) and cadmium chloride (50 ppm cadmium) in the drinking water. Cadmium caused about 10% body-weight loss in selenium-deficient, as well as in supplemented rats. Glutathione peroxidase activity in liver 105,000 g supernatant and in erythrocyte hemolysate from selenium-deficient rats was about 1% and 3%, respectively, of that in supplemented rats. A cadmium-induced decrease of glutathione peroxidase activity was found in erythrocyte and liver preparations from selenium-supplemented rats, while cadmium caused an increase of the liver activity in selenium deficiency. Selenium deficiency per se caused a significant decrease of cytochrome P-450 content, while cadmium treatment did not modify further the content of this enzyme. NADPH-cytochrome c reductase was not changed by selenium regimen or cadmium treatment, while cytochrome b5 was increased on cadmium treatment of the supplemented rat. The microsomal metabolism of N,N-dimethylaniline showed a decrease of the cytochrome P-450-dependent C-oxygenation in selenium-deficient groups. Cadmium treatment had no further significant effect. The flavin-containing monooxygenase, which performs N-oxygenation of N,N-dimethylaniline, was decreased significantly by cadmium treatment in selenium deficiency. Selenium deficiency seems thus to be connected with higher susceptibility to cadmium-induced impairments of liver detoxication functions, although progressive accumulation of cadmium in the liver appears to produce only modest effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LITERATURE REVIEW: MODEL PREDIKSI PERILAKU IBU SEBAGAI PENYEBAB STUNTING PADA BALITA Pengaruh Variasi Penambahan Udang Ronggeng (Harpiosquilla raphidea) dan Daun Kelor (Moringa oleifera) Terhadap Mutu Fisik Mutu Kimia dan Mikrobiologi Nugget Asupan zat gizi makro, vitamin B6, Vitamin C dan status Gizi penderita tuberculosis di puskesmas nagaswidak palembang tahun 2022 Perbedaan Pengetahuan Gizi, Pola Makan dan Status Gizi pada Mahasiswa Gizi dan Non Gizi Poltekkes Kemenkes Riau Manajemen Nyeri Pasca Operasi : Tinjauan Pustaka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1