Chengxuan He , Shiqun Wu , Lingzhi Wang , Jinlong Zhang
{"title":"光增强甲烷干重整研究进展综述","authors":"Chengxuan He , Shiqun Wu , Lingzhi Wang , Jinlong Zhang","doi":"10.1016/j.jphotochemrev.2021.100468","DOIUrl":null,"url":null,"abstract":"<div><p>Converting methane and carbon dioxide into hydrogen and carbon monoxide is significant and attractive because it can mitigate the greenhouse effect and produce useful chemical intermediate. However, these two greenhouse gases are challenging to convert due to their high bond energy and chemically inert. Although thermocatalytic dry reforming of methane (DRM) achieves high efficiency, it requires high energy and often causes deactivation due to carbon deposition. Recently, a lot of research results show that photo-enhanced DRM is a promising and green route for this reaction under relatively mild conditions. This review first introduces the importance and challenge of CH<sub>4</sub> and CO<sub>2</sub> conversion. Then, we summarize the related reports of photo-enhanced dry reforming of methane in detail, including material preparation, experimental conditions and results, and mechanism study. In particular, the related studies have been classified according to types of input energy and the types of catalyst. Finally, we provide insightful perspectives and prospects for the future development of this field.</p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"51 ","pages":"Article 100468"},"PeriodicalIF":12.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Recent advances in photo-enhanced dry reforming of methane: A review\",\"authors\":\"Chengxuan He , Shiqun Wu , Lingzhi Wang , Jinlong Zhang\",\"doi\":\"10.1016/j.jphotochemrev.2021.100468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Converting methane and carbon dioxide into hydrogen and carbon monoxide is significant and attractive because it can mitigate the greenhouse effect and produce useful chemical intermediate. However, these two greenhouse gases are challenging to convert due to their high bond energy and chemically inert. Although thermocatalytic dry reforming of methane (DRM) achieves high efficiency, it requires high energy and often causes deactivation due to carbon deposition. Recently, a lot of research results show that photo-enhanced DRM is a promising and green route for this reaction under relatively mild conditions. This review first introduces the importance and challenge of CH<sub>4</sub> and CO<sub>2</sub> conversion. Then, we summarize the related reports of photo-enhanced dry reforming of methane in detail, including material preparation, experimental conditions and results, and mechanism study. In particular, the related studies have been classified according to types of input energy and the types of catalyst. Finally, we provide insightful perspectives and prospects for the future development of this field.</p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"51 \",\"pages\":\"Article 100468\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556721000678\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556721000678","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Recent advances in photo-enhanced dry reforming of methane: A review
Converting methane and carbon dioxide into hydrogen and carbon monoxide is significant and attractive because it can mitigate the greenhouse effect and produce useful chemical intermediate. However, these two greenhouse gases are challenging to convert due to their high bond energy and chemically inert. Although thermocatalytic dry reforming of methane (DRM) achieves high efficiency, it requires high energy and often causes deactivation due to carbon deposition. Recently, a lot of research results show that photo-enhanced DRM is a promising and green route for this reaction under relatively mild conditions. This review first introduces the importance and challenge of CH4 and CO2 conversion. Then, we summarize the related reports of photo-enhanced dry reforming of methane in detail, including material preparation, experimental conditions and results, and mechanism study. In particular, the related studies have been classified according to types of input energy and the types of catalyst. Finally, we provide insightful perspectives and prospects for the future development of this field.
期刊介绍:
The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.