Prashu Jain, Sony Jagtap, Megha Chauhan, Ramani V. Motghare
{"title":"自组装cu -壳聚糖/f-MWCNT在玻碳电极上检测红霉素的电催化行为","authors":"Prashu Jain, Sony Jagtap, Megha Chauhan, Ramani V. Motghare","doi":"10.1016/j.sbsr.2023.100568","DOIUrl":null,"url":null,"abstract":"<div><p>Although antibiotics are class of compounds that are administered to fight bacterial infections in human and animals, its abuse is ensuing its occurrence in natural resources producing drug resistant strains, which in turn affect human health. Therefore, it is important to develop rapid and effective detection techniques for such antibiotics which are contaminating various natural resources. In this study, a novel electrochemical sensor was developed for determination of one of the most used macrolide antibiotic “Erythromycin” based on self- assembled cu-chitosan/f-MWCNT modified glassy carbon electrode. The negatively charged f-MWCNT holds the positively charged chitosan and Cu<sup>2+</sup> ions, leading to formation of Cu-chitosan/f-MWCNT/GCE. FE-SEM, FT-IR, EDS as well as electrochemical methods such as CV, DPV and EIS were used to characterize formation of Cu-chitosan/f-MWCNT/GCE at every step of fabrication. From thermo-gravimetric analysis the composite was found to be stable up to 120 °C and further heating results in breakdown of the skeletal structure between 300 °C to 500 °C. Results from Cyclic voltammetry and electrochemical impedance spectroscopy indicated that after modification, the value of charge transfer resistance (Rct) decreased, and the electron transfer kinetics increased, significantly. In comparison to bare GCE, the Cu-chitosan/f-MWCNT/GCE displayed excellent electrocatalytic activity for the oxidation of erythromycin, as indicated by an increased oxidation peak current. The differential pulse peak current was linear for erythromycin concentration from 0.5 × 10<sup>−6</sup> to 10 × 10<sup>−6</sup> and 10 × 10<sup>−6</sup> to 150 × 10<sup>−6</sup>M, with LOD 0.2 × 10<sup>−6</sup>M. The sensor demonstrated high selectivity, excellent stability, and impressive repeatability, during erythromycin determination. Thus, the proposed sensor demonstrates promising analytical applicability towards erythromycin detection in various samples.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"41 ","pages":"Article 100568"},"PeriodicalIF":5.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrocatalytic behaviour of self-assembled Cu-chitosan/f-MWCNT on glassy carbon electrode for detection of erythromycin in various samples\",\"authors\":\"Prashu Jain, Sony Jagtap, Megha Chauhan, Ramani V. Motghare\",\"doi\":\"10.1016/j.sbsr.2023.100568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although antibiotics are class of compounds that are administered to fight bacterial infections in human and animals, its abuse is ensuing its occurrence in natural resources producing drug resistant strains, which in turn affect human health. Therefore, it is important to develop rapid and effective detection techniques for such antibiotics which are contaminating various natural resources. In this study, a novel electrochemical sensor was developed for determination of one of the most used macrolide antibiotic “Erythromycin” based on self- assembled cu-chitosan/f-MWCNT modified glassy carbon electrode. The negatively charged f-MWCNT holds the positively charged chitosan and Cu<sup>2+</sup> ions, leading to formation of Cu-chitosan/f-MWCNT/GCE. FE-SEM, FT-IR, EDS as well as electrochemical methods such as CV, DPV and EIS were used to characterize formation of Cu-chitosan/f-MWCNT/GCE at every step of fabrication. From thermo-gravimetric analysis the composite was found to be stable up to 120 °C and further heating results in breakdown of the skeletal structure between 300 °C to 500 °C. Results from Cyclic voltammetry and electrochemical impedance spectroscopy indicated that after modification, the value of charge transfer resistance (Rct) decreased, and the electron transfer kinetics increased, significantly. In comparison to bare GCE, the Cu-chitosan/f-MWCNT/GCE displayed excellent electrocatalytic activity for the oxidation of erythromycin, as indicated by an increased oxidation peak current. The differential pulse peak current was linear for erythromycin concentration from 0.5 × 10<sup>−6</sup> to 10 × 10<sup>−6</sup> and 10 × 10<sup>−6</sup> to 150 × 10<sup>−6</sup>M, with LOD 0.2 × 10<sup>−6</sup>M. The sensor demonstrated high selectivity, excellent stability, and impressive repeatability, during erythromycin determination. Thus, the proposed sensor demonstrates promising analytical applicability towards erythromycin detection in various samples.</p></div>\",\"PeriodicalId\":424,\"journal\":{\"name\":\"Sensing and Bio-Sensing Research\",\"volume\":\"41 \",\"pages\":\"Article 100568\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensing and Bio-Sensing Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221418042300020X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221418042300020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrocatalytic behaviour of self-assembled Cu-chitosan/f-MWCNT on glassy carbon electrode for detection of erythromycin in various samples
Although antibiotics are class of compounds that are administered to fight bacterial infections in human and animals, its abuse is ensuing its occurrence in natural resources producing drug resistant strains, which in turn affect human health. Therefore, it is important to develop rapid and effective detection techniques for such antibiotics which are contaminating various natural resources. In this study, a novel electrochemical sensor was developed for determination of one of the most used macrolide antibiotic “Erythromycin” based on self- assembled cu-chitosan/f-MWCNT modified glassy carbon electrode. The negatively charged f-MWCNT holds the positively charged chitosan and Cu2+ ions, leading to formation of Cu-chitosan/f-MWCNT/GCE. FE-SEM, FT-IR, EDS as well as electrochemical methods such as CV, DPV and EIS were used to characterize formation of Cu-chitosan/f-MWCNT/GCE at every step of fabrication. From thermo-gravimetric analysis the composite was found to be stable up to 120 °C and further heating results in breakdown of the skeletal structure between 300 °C to 500 °C. Results from Cyclic voltammetry and electrochemical impedance spectroscopy indicated that after modification, the value of charge transfer resistance (Rct) decreased, and the electron transfer kinetics increased, significantly. In comparison to bare GCE, the Cu-chitosan/f-MWCNT/GCE displayed excellent electrocatalytic activity for the oxidation of erythromycin, as indicated by an increased oxidation peak current. The differential pulse peak current was linear for erythromycin concentration from 0.5 × 10−6 to 10 × 10−6 and 10 × 10−6 to 150 × 10−6M, with LOD 0.2 × 10−6M. The sensor demonstrated high selectivity, excellent stability, and impressive repeatability, during erythromycin determination. Thus, the proposed sensor demonstrates promising analytical applicability towards erythromycin detection in various samples.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.