Zhongxing Zhang , Jingling Zhu , Xia Song , Yuting Wen , Chenxian Zhu , Jun Li
{"title":"由纤维素微纤维和壳聚糖衍生的生物质基单网和双网水凝胶作为植物生长基质的潜在应用","authors":"Zhongxing Zhang , Jingling Zhu , Xia Song , Yuting Wen , Chenxian Zhu , Jun Li","doi":"10.1016/j.carbpol.2023.121170","DOIUrl":null,"url":null,"abstract":"<div><p>A series of hydrogels were synthesized from renewable and low-cost micro-sized cellulose<span><span> fiber. The single-network hydrogel was composed of cellulose fiber and a small amount of another polysaccharide, chitosan, which ‘glued’ individual cellulose fiber pieces together through Schiff-base bonding. The double-network hydrogel was constructed by adding a secondary network, the covalently crosslinked </span>polyacrylamide<span>, into the single-network hydrogel, which was synthesized by conducting Schiff-base reaction and free radical polymerization at the same time in a facile one-pot process. In both single- and double-network hydrogels, cellulose fiber constituted the dominant component. Both types of hydrogels exhibited good swelling properties. The double-network hydrogel showed much improved stability against soaking in water and higher salt tolerance. Germination experiment with choy sum seeds sowed on hydrogel surface showed that the seeds were able to germinate and further develop roots, shoots, and true leaves, demonstrating the potential of the biomass-derived hydrogels for soilless plant growing applications.</span></span></p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass-based single- and double-network hydrogels derived from cellulose microfiber and chitosan for potential application as plant growing substrate\",\"authors\":\"Zhongxing Zhang , Jingling Zhu , Xia Song , Yuting Wen , Chenxian Zhu , Jun Li\",\"doi\":\"10.1016/j.carbpol.2023.121170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A series of hydrogels were synthesized from renewable and low-cost micro-sized cellulose<span><span> fiber. The single-network hydrogel was composed of cellulose fiber and a small amount of another polysaccharide, chitosan, which ‘glued’ individual cellulose fiber pieces together through Schiff-base bonding. The double-network hydrogel was constructed by adding a secondary network, the covalently crosslinked </span>polyacrylamide<span>, into the single-network hydrogel, which was synthesized by conducting Schiff-base reaction and free radical polymerization at the same time in a facile one-pot process. In both single- and double-network hydrogels, cellulose fiber constituted the dominant component. Both types of hydrogels exhibited good swelling properties. The double-network hydrogel showed much improved stability against soaking in water and higher salt tolerance. Germination experiment with choy sum seeds sowed on hydrogel surface showed that the seeds were able to germinate and further develop roots, shoots, and true leaves, demonstrating the potential of the biomass-derived hydrogels for soilless plant growing applications.</span></span></p></div>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861723006355\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861723006355","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Biomass-based single- and double-network hydrogels derived from cellulose microfiber and chitosan for potential application as plant growing substrate
A series of hydrogels were synthesized from renewable and low-cost micro-sized cellulose fiber. The single-network hydrogel was composed of cellulose fiber and a small amount of another polysaccharide, chitosan, which ‘glued’ individual cellulose fiber pieces together through Schiff-base bonding. The double-network hydrogel was constructed by adding a secondary network, the covalently crosslinked polyacrylamide, into the single-network hydrogel, which was synthesized by conducting Schiff-base reaction and free radical polymerization at the same time in a facile one-pot process. In both single- and double-network hydrogels, cellulose fiber constituted the dominant component. Both types of hydrogels exhibited good swelling properties. The double-network hydrogel showed much improved stability against soaking in water and higher salt tolerance. Germination experiment with choy sum seeds sowed on hydrogel surface showed that the seeds were able to germinate and further develop roots, shoots, and true leaves, demonstrating the potential of the biomass-derived hydrogels for soilless plant growing applications.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.