Gabriel Schäfer*, Muhamed Ahmetovic, Tony Fleischer, Stefan Abele
{"title":"高极性杂环氨基环丙基构建块的可扩展路线的发展","authors":"Gabriel Schäfer*, Muhamed Ahmetovic, Tony Fleischer, Stefan Abele","doi":"10.1021/acs.oprd.0c00358","DOIUrl":null,"url":null,"abstract":"<p >A robust and scalable route toward key heterocyclic building block 1-(pyrimidin-2-yl)cyclopropan-1-amine hydrochloride from cyclopropanated starting material 1-amino-1-cyclopropanecarbonitrile hydrochloride was successfully developed. The key to success was the construction of a pyrimidine ring via cyclization from an amidine intermediate and a bench-stable 2-chloro vinamidinium hexafluorophosphate salt. The cyclization was performed under mild conditions, and the resulting 4-cloropyrimidine derivative was isolated in high yield and purity. The final hydrogenation was intensively optimized: A combination of Pd(OH)<sub>2</sub>/C as a catalyst and NaOMe as a base at 1 bar H<sub>2</sub> pressure in MeOH simultaneously cleaved the Cbz group and dechlorinated the pyrimidine ring while at the same time suppressing the over-reduction of the pyrimidine ring to below 1.0%. After acidification with HCl, followed by removal of the catalyst and NaCl by filtration, the final product was isolated in high yield and purity as a bench-stable off-white solid. The overall yield of the five-step sequence was 57%.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.oprd.0c00358","citationCount":"2","resultStr":"{\"title\":\"Development of a Scalable Route for a Highly Polar Heterocyclic Aminocyclopropyl Building Block\",\"authors\":\"Gabriel Schäfer*, Muhamed Ahmetovic, Tony Fleischer, Stefan Abele\",\"doi\":\"10.1021/acs.oprd.0c00358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A robust and scalable route toward key heterocyclic building block 1-(pyrimidin-2-yl)cyclopropan-1-amine hydrochloride from cyclopropanated starting material 1-amino-1-cyclopropanecarbonitrile hydrochloride was successfully developed. The key to success was the construction of a pyrimidine ring via cyclization from an amidine intermediate and a bench-stable 2-chloro vinamidinium hexafluorophosphate salt. The cyclization was performed under mild conditions, and the resulting 4-cloropyrimidine derivative was isolated in high yield and purity. The final hydrogenation was intensively optimized: A combination of Pd(OH)<sub>2</sub>/C as a catalyst and NaOMe as a base at 1 bar H<sub>2</sub> pressure in MeOH simultaneously cleaved the Cbz group and dechlorinated the pyrimidine ring while at the same time suppressing the over-reduction of the pyrimidine ring to below 1.0%. After acidification with HCl, followed by removal of the catalyst and NaCl by filtration, the final product was isolated in high yield and purity as a bench-stable off-white solid. The overall yield of the five-step sequence was 57%.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acs.oprd.0c00358\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.oprd.0c00358\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.oprd.0c00358","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Development of a Scalable Route for a Highly Polar Heterocyclic Aminocyclopropyl Building Block
A robust and scalable route toward key heterocyclic building block 1-(pyrimidin-2-yl)cyclopropan-1-amine hydrochloride from cyclopropanated starting material 1-amino-1-cyclopropanecarbonitrile hydrochloride was successfully developed. The key to success was the construction of a pyrimidine ring via cyclization from an amidine intermediate and a bench-stable 2-chloro vinamidinium hexafluorophosphate salt. The cyclization was performed under mild conditions, and the resulting 4-cloropyrimidine derivative was isolated in high yield and purity. The final hydrogenation was intensively optimized: A combination of Pd(OH)2/C as a catalyst and NaOMe as a base at 1 bar H2 pressure in MeOH simultaneously cleaved the Cbz group and dechlorinated the pyrimidine ring while at the same time suppressing the over-reduction of the pyrimidine ring to below 1.0%. After acidification with HCl, followed by removal of the catalyst and NaCl by filtration, the final product was isolated in high yield and purity as a bench-stable off-white solid. The overall yield of the five-step sequence was 57%.