基于螺吡喃的先进光开关材料:通往未来刺激响应设备的迷人途径

Jaber Keyvan Rad , Zahra Balzade , Ali Reza Mahdavian
{"title":"基于螺吡喃的先进光开关材料:通往未来刺激响应设备的迷人途径","authors":"Jaber Keyvan Rad ,&nbsp;Zahra Balzade ,&nbsp;Ali Reza Mahdavian","doi":"10.1016/j.jphotochemrev.2022.100487","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Recent years have witnessed tremendous progress and developments of the photoswitchable spiropyran-based polymers, owing to distinctive and particular physicochemical properties of their isomers upon a variety of triggers, and especially light illumination. Light is a fascinating and green stimulus because of its remote control, micron- or submicron-sized focusing area with controllable wavelength and energy, non-invasiveness and non-destructive nature, precisely controlled direction, and availability. In this review, we have emphasized on and summarized the most recent observations and efforts in the progress of photoswitchable spiropyran-based materials and their applications as sensors for heavy metal cations, anions, pH, acid and base vapors, wettability and humidity. Other items include data recording and anticounterfeiting devices, photorheological fluids, optically reversible switching membranes, photoregulating </span>surface plasmon resonance, photomodulation of ion conductivity and mechanoresponsive polymers. The bio-based field is another interesting subject that is discussed here and consists of reversible cell sheet engineering, photodynamic therapy, switchable </span>fluorescence labeling<span>, controlled drug delivery and biological ion channels. On the other hand, limited light penetration inside the living tissues and hazards of high-energy ultraviolet irradiation<span> for initiating photochemical transformations have limited the use of such light-controlled systems in medicinal and therapeutic means. Those spiropyran-based materials which are susceptible to being triggered by low energy near IR (NIR) two-photon </span></span></span>light irradiation<span> and upconversion nanoparticles are recently under serious explorations and have been reviewed as a new perspective for their advanced applications.</span></p></div>","PeriodicalId":376,"journal":{"name":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","volume":"51 ","pages":"Article 100487"},"PeriodicalIF":12.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices\",\"authors\":\"Jaber Keyvan Rad ,&nbsp;Zahra Balzade ,&nbsp;Ali Reza Mahdavian\",\"doi\":\"10.1016/j.jphotochemrev.2022.100487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Recent years have witnessed tremendous progress and developments of the photoswitchable spiropyran-based polymers, owing to distinctive and particular physicochemical properties of their isomers upon a variety of triggers, and especially light illumination. Light is a fascinating and green stimulus because of its remote control, micron- or submicron-sized focusing area with controllable wavelength and energy, non-invasiveness and non-destructive nature, precisely controlled direction, and availability. In this review, we have emphasized on and summarized the most recent observations and efforts in the progress of photoswitchable spiropyran-based materials and their applications as sensors for heavy metal cations, anions, pH, acid and base vapors, wettability and humidity. Other items include data recording and anticounterfeiting devices, photorheological fluids, optically reversible switching membranes, photoregulating </span>surface plasmon resonance, photomodulation of ion conductivity and mechanoresponsive polymers. The bio-based field is another interesting subject that is discussed here and consists of reversible cell sheet engineering, photodynamic therapy, switchable </span>fluorescence labeling<span>, controlled drug delivery and biological ion channels. On the other hand, limited light penetration inside the living tissues and hazards of high-energy ultraviolet irradiation<span> for initiating photochemical transformations have limited the use of such light-controlled systems in medicinal and therapeutic means. Those spiropyran-based materials which are susceptible to being triggered by low energy near IR (NIR) two-photon </span></span></span>light irradiation<span> and upconversion nanoparticles are recently under serious explorations and have been reviewed as a new perspective for their advanced applications.</span></p></div>\",\"PeriodicalId\":376,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"volume\":\"51 \",\"pages\":\"Article 100487\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology C: Photochemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389556722000065\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology C: Photochemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389556722000065","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 58

摘要

近年来,由于其异构体在各种触发条件下,特别是光照下具有独特的物理化学性质,光开关螺旋吡喃基聚合物取得了巨大的进展和发展。光具有可远程控制、微米级或亚微米级聚焦区域、波长和能量可控、非侵入性和非破坏性、方向可精确控制、可获得性等特点,是一种迷人的绿色刺激。本文综述了近年来光开关螺吡喃基材料在重金属阳离子、阴离子、pH值、酸碱蒸汽、润湿性和湿度传感器等方面的研究进展。其他项目包括数据记录和防伪设备、光流变流体、光可逆开关膜、光调节表面等离子体共振、离子电导率的光电调节和机械反应性聚合物。生物基领域是这里讨论的另一个有趣的主题,包括可逆的细胞片工程、光动力治疗、可切换的荧光标记、受控的药物输送和生物离子通道。另一方面,生物组织内部有限的光穿透和用于启动光化学转化的高能紫外线照射的危害限制了这种光控系统在医学和治疗手段中的使用。近年来,利用低能量近红外双光子辐照和上转换纳米粒子引发的螺吡喃基材料正受到人们的重视,并成为其先进应用的新前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices

Recent years have witnessed tremendous progress and developments of the photoswitchable spiropyran-based polymers, owing to distinctive and particular physicochemical properties of their isomers upon a variety of triggers, and especially light illumination. Light is a fascinating and green stimulus because of its remote control, micron- or submicron-sized focusing area with controllable wavelength and energy, non-invasiveness and non-destructive nature, precisely controlled direction, and availability. In this review, we have emphasized on and summarized the most recent observations and efforts in the progress of photoswitchable spiropyran-based materials and their applications as sensors for heavy metal cations, anions, pH, acid and base vapors, wettability and humidity. Other items include data recording and anticounterfeiting devices, photorheological fluids, optically reversible switching membranes, photoregulating surface plasmon resonance, photomodulation of ion conductivity and mechanoresponsive polymers. The bio-based field is another interesting subject that is discussed here and consists of reversible cell sheet engineering, photodynamic therapy, switchable fluorescence labeling, controlled drug delivery and biological ion channels. On the other hand, limited light penetration inside the living tissues and hazards of high-energy ultraviolet irradiation for initiating photochemical transformations have limited the use of such light-controlled systems in medicinal and therapeutic means. Those spiropyran-based materials which are susceptible to being triggered by low energy near IR (NIR) two-photon light irradiation and upconversion nanoparticles are recently under serious explorations and have been reviewed as a new perspective for their advanced applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.90
自引率
0.70%
发文量
36
审稿时长
47 days
期刊介绍: The Journal of Photochemistry and Photobiology C: Photochemistry Reviews, published by Elsevier, is the official journal of the Japanese Photochemistry Association. It serves as a platform for scientists across various fields of photochemistry to communicate and collaborate, aiming to foster new interdisciplinary research areas. The journal covers a wide scope, including fundamental molecular photochemistry, organic and inorganic photochemistry, photoelectrochemistry, photocatalysis, solar energy conversion, photobiology, and more. It provides a forum for discussing advancements and promoting collaboration in the field of photochemistry.
期刊最新文献
Biophotonics and nanorobotics for biomedical imaging, biosensing, drug delivery, and therapy Photocatalytic water splitting reaction: The pathway from semiconductors to MOFs Boron doped nanomaterials for photocatalysis Fluorescent fluorinated materials: A novel material for application in photodynamic therapy and designing chemical sensors Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1