集传统“去污传感”功能于一体的化学和生物防护材料研究进展

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2021-07-01 DOI:10.1016/j.mser.2021.100626
Peixin Tang, Gang Sun
{"title":"集传统“去污传感”功能于一体的化学和生物防护材料研究进展","authors":"Peixin Tang,&nbsp;Gang Sun","doi":"10.1016/j.mser.2021.100626","DOIUrl":null,"url":null,"abstract":"<div><p>Personal protective equipment (PPE) is crucial for ensuring occupational safety when handling toxic chemicals or in close contact with biological pathogens. The increased poisoning and infection cases outside the working scenario have attracted public attention, which drove the development and application of PPE for the professionals and the public. The use of PPE can effectively lower the risk of acute and chronic diseases caused by pesticide exposures and significantly reduce the spread of infectious diseases. However, conventional PPE mostly only functions as physical blocking or electrostatic repulsion materials, which still poses potential risks caused by cross- and post-contamination from the PPE. Although sensors are not usually considered as a necessary component of PPE, the detection of health threats in the environment could benefit preparations for unprepared risks promptly, especially in non-occupational situations, thus improving the protection of human safety. In this review, we discuss the needs of novel PPE by surveying some insufficient protection cases and threats that occurred during conventional PPE applications. Then, we summarize recent progress in developing single-functional decontamination and colorimetric sensing PPE, mostly fiber-based media against agricultural toxicants and microorganisms, with intension to inspire the future design of novel PPE with the integrated “decontamination-and-sensing” property. Some recently developed conventional dual-functional materials against either pesticide or microorganism exposures are highlighted. Finally, strategies and limitations of developing decontamination and sensing material using unique interactions and reactions of targets with functionalized fibrous substrates are discussed by comparing the successful approaches and practical challenges in PPE applications.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mser.2021.100626","citationCount":"5","resultStr":"{\"title\":\"Research progress in chemical and biological protective materials with integrated conventional “decontamination-and-sensing” functions\",\"authors\":\"Peixin Tang,&nbsp;Gang Sun\",\"doi\":\"10.1016/j.mser.2021.100626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Personal protective equipment (PPE) is crucial for ensuring occupational safety when handling toxic chemicals or in close contact with biological pathogens. The increased poisoning and infection cases outside the working scenario have attracted public attention, which drove the development and application of PPE for the professionals and the public. The use of PPE can effectively lower the risk of acute and chronic diseases caused by pesticide exposures and significantly reduce the spread of infectious diseases. However, conventional PPE mostly only functions as physical blocking or electrostatic repulsion materials, which still poses potential risks caused by cross- and post-contamination from the PPE. Although sensors are not usually considered as a necessary component of PPE, the detection of health threats in the environment could benefit preparations for unprepared risks promptly, especially in non-occupational situations, thus improving the protection of human safety. In this review, we discuss the needs of novel PPE by surveying some insufficient protection cases and threats that occurred during conventional PPE applications. Then, we summarize recent progress in developing single-functional decontamination and colorimetric sensing PPE, mostly fiber-based media against agricultural toxicants and microorganisms, with intension to inspire the future design of novel PPE with the integrated “decontamination-and-sensing” property. Some recently developed conventional dual-functional materials against either pesticide or microorganism exposures are highlighted. Finally, strategies and limitations of developing decontamination and sensing material using unique interactions and reactions of targets with functionalized fibrous substrates are discussed by comparing the successful approaches and practical challenges in PPE applications.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mser.2021.100626\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X21000218\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X21000218","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

在处理有毒化学品或与生物病原体密切接触时,个人防护装备(PPE)对于确保职业安全至关重要。工作场景外中毒和感染病例的增加引起了公众的关注,这推动了专业人员和公众个人防护装备的开发和应用。个人防护装备的使用可以有效降低因农药接触引起的急慢性疾病的风险,显著减少传染病的传播。然而,传统的防护用品大多只是作为物理阻隔或静电斥力材料,仍然存在防护用品交叉污染和后污染的潜在风险。虽然传感器通常不被认为是个人防护装备的必要组成部分,但检测环境中的健康威胁有助于迅速为未准备好的风险做好准备,特别是在非职业情况下,从而改善对人身安全的保护。在这篇综述中,我们通过调查一些在传统PPE应用中发生的保护不足的案例和威胁来讨论新型PPE的需求。然后,我们总结了单功能去污和比色传感PPE的最新进展,主要是针对农业毒物和微生物的纤维基介质,旨在启发未来设计具有“去污和传感”特性的新型PPE。重点介绍了近年来开发的一些抗农药或微生物暴露的常规双功能材料。最后,通过比较PPE应用中的成功方法和实际挑战,讨论了利用目标与功能化纤维基板的独特相互作用和反应开发去污和传感材料的策略和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress in chemical and biological protective materials with integrated conventional “decontamination-and-sensing” functions

Personal protective equipment (PPE) is crucial for ensuring occupational safety when handling toxic chemicals or in close contact with biological pathogens. The increased poisoning and infection cases outside the working scenario have attracted public attention, which drove the development and application of PPE for the professionals and the public. The use of PPE can effectively lower the risk of acute and chronic diseases caused by pesticide exposures and significantly reduce the spread of infectious diseases. However, conventional PPE mostly only functions as physical blocking or electrostatic repulsion materials, which still poses potential risks caused by cross- and post-contamination from the PPE. Although sensors are not usually considered as a necessary component of PPE, the detection of health threats in the environment could benefit preparations for unprepared risks promptly, especially in non-occupational situations, thus improving the protection of human safety. In this review, we discuss the needs of novel PPE by surveying some insufficient protection cases and threats that occurred during conventional PPE applications. Then, we summarize recent progress in developing single-functional decontamination and colorimetric sensing PPE, mostly fiber-based media against agricultural toxicants and microorganisms, with intension to inspire the future design of novel PPE with the integrated “decontamination-and-sensing” property. Some recently developed conventional dual-functional materials against either pesticide or microorganism exposures are highlighted. Finally, strategies and limitations of developing decontamination and sensing material using unique interactions and reactions of targets with functionalized fibrous substrates are discussed by comparing the successful approaches and practical challenges in PPE applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Highly efficient and stable organic solar cells achieved by improving exciton diffusion and splitting through a volatile additive-assisted ternary strategy Density functional theory and molecular dynamics simulations for resistive switching research Triterpenoid saponin-based supramolecular host-guest injectable hydrogels inhibit the growth of melanoma via ROS-mediated apoptosis Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors Alginate fiber anchored conductive coordination frameworks for ultrastable light-gas dual sensors with synergistic effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1