结构材料的增材制造

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: R: Reports Pub Date : 2021-07-01 DOI:10.1016/j.mser.2020.100596
Guo Liu , Xiaofeng Zhang , Xuliang Chen , Yunhu He , Lizi Cheng , Mengke Huo , Jianan Yin , Fengqian Hao , Siyao Chen , Peiyu Wang , Shenghui Yi , Lei Wan , Zhengyi Mao , Zhou Chen , Xu Wang , Zhaowenbo Cao , Jian Lu
{"title":"结构材料的增材制造","authors":"Guo Liu ,&nbsp;Xiaofeng Zhang ,&nbsp;Xuliang Chen ,&nbsp;Yunhu He ,&nbsp;Lizi Cheng ,&nbsp;Mengke Huo ,&nbsp;Jianan Yin ,&nbsp;Fengqian Hao ,&nbsp;Siyao Chen ,&nbsp;Peiyu Wang ,&nbsp;Shenghui Yi ,&nbsp;Lei Wan ,&nbsp;Zhengyi Mao ,&nbsp;Zhou Chen ,&nbsp;Xu Wang ,&nbsp;Zhaowenbo Cao ,&nbsp;Jian Lu","doi":"10.1016/j.mser.2020.100596","DOIUrl":null,"url":null,"abstract":"<div><p>Additive manufacturing (AM), also known as three-dimensional (3D) printing, has boomed over the last 30 years, and its use has accelerated during the last 5 years. AM is a materials-oriented manufacturing technology, and printing resolution versus printing scalability/speed trade-off exists among various types of materials, including polymers, metals, ceramics, glasses, and composite materials. Four-dimensional (4D) printing, together with versatile transformation systems, drives researchers to achieve and utilize high dimensional AM. Multiple perspectives of the AM of structural materials have been raised and illustrated in this review, including multi-material AM (MMa-AM), multi-modulus AM (MMo-AM), multi-scale AM (MSc-AM), multi-system AM (MSy-AM), multi-dimensional AM (MD-AM), and multi-function AM (MF-AM). The rapid and tremendous development of AM materials and methods offers great potential for structural applications, such as in the aerospace field, the biomedical field, electronic devices, nuclear industry, flexible and wearable devices, soft sensors, actuators, and robotics, jewelry and art decorations, land transportation, underwater devices, and porous structures.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mser.2020.100596","citationCount":"216","resultStr":"{\"title\":\"Additive manufacturing of structural materials\",\"authors\":\"Guo Liu ,&nbsp;Xiaofeng Zhang ,&nbsp;Xuliang Chen ,&nbsp;Yunhu He ,&nbsp;Lizi Cheng ,&nbsp;Mengke Huo ,&nbsp;Jianan Yin ,&nbsp;Fengqian Hao ,&nbsp;Siyao Chen ,&nbsp;Peiyu Wang ,&nbsp;Shenghui Yi ,&nbsp;Lei Wan ,&nbsp;Zhengyi Mao ,&nbsp;Zhou Chen ,&nbsp;Xu Wang ,&nbsp;Zhaowenbo Cao ,&nbsp;Jian Lu\",\"doi\":\"10.1016/j.mser.2020.100596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Additive manufacturing (AM), also known as three-dimensional (3D) printing, has boomed over the last 30 years, and its use has accelerated during the last 5 years. AM is a materials-oriented manufacturing technology, and printing resolution versus printing scalability/speed trade-off exists among various types of materials, including polymers, metals, ceramics, glasses, and composite materials. Four-dimensional (4D) printing, together with versatile transformation systems, drives researchers to achieve and utilize high dimensional AM. Multiple perspectives of the AM of structural materials have been raised and illustrated in this review, including multi-material AM (MMa-AM), multi-modulus AM (MMo-AM), multi-scale AM (MSc-AM), multi-system AM (MSy-AM), multi-dimensional AM (MD-AM), and multi-function AM (MF-AM). The rapid and tremendous development of AM materials and methods offers great potential for structural applications, such as in the aerospace field, the biomedical field, electronic devices, nuclear industry, flexible and wearable devices, soft sensors, actuators, and robotics, jewelry and art decorations, land transportation, underwater devices, and porous structures.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mser.2020.100596\",\"citationCount\":\"216\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X20300541\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X20300541","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 216

摘要

增材制造(AM),也被称为三维(3D)打印,在过去的30年里蓬勃发展,在过去的5年里,它的使用加速了。增材制造是一种面向材料的制造技术,打印分辨率与打印可扩展性/速度之间存在权衡,包括聚合物、金属、陶瓷、玻璃和复合材料等各种类型的材料。四维(4D)打印与多功能转换系统一起,推动研究人员实现和利用高维AM。本文从多材料AM (MMa-AM)、多模数AM (MMo-AM)、多尺度AM (MSc-AM)、多系统AM (MSy-AM)、多维AM (MD-AM)和多功能AM (MF-AM)等几个方面阐述了结构材料AM的研究方向。AM材料和方法的快速和巨大发展为结构应用提供了巨大的潜力,例如在航空航天领域、生物医学领域、电子设备、核工业、柔性和可穿戴设备、软传感器、执行器和机器人、珠宝和艺术装饰、陆地运输、水下设备和多孔结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive manufacturing of structural materials

Additive manufacturing (AM), also known as three-dimensional (3D) printing, has boomed over the last 30 years, and its use has accelerated during the last 5 years. AM is a materials-oriented manufacturing technology, and printing resolution versus printing scalability/speed trade-off exists among various types of materials, including polymers, metals, ceramics, glasses, and composite materials. Four-dimensional (4D) printing, together with versatile transformation systems, drives researchers to achieve and utilize high dimensional AM. Multiple perspectives of the AM of structural materials have been raised and illustrated in this review, including multi-material AM (MMa-AM), multi-modulus AM (MMo-AM), multi-scale AM (MSc-AM), multi-system AM (MSy-AM), multi-dimensional AM (MD-AM), and multi-function AM (MF-AM). The rapid and tremendous development of AM materials and methods offers great potential for structural applications, such as in the aerospace field, the biomedical field, electronic devices, nuclear industry, flexible and wearable devices, soft sensors, actuators, and robotics, jewelry and art decorations, land transportation, underwater devices, and porous structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: R: Reports
Materials Science and Engineering: R: Reports 工程技术-材料科学:综合
CiteScore
60.50
自引率
0.30%
发文量
19
审稿时长
34 days
期刊介绍: Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews. The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.
期刊最新文献
Highly efficient and stable organic solar cells achieved by improving exciton diffusion and splitting through a volatile additive-assisted ternary strategy Density functional theory and molecular dynamics simulations for resistive switching research Triterpenoid saponin-based supramolecular host-guest injectable hydrogels inhibit the growth of melanoma via ROS-mediated apoptosis Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors Alginate fiber anchored conductive coordination frameworks for ultrastable light-gas dual sensors with synergistic effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1