Urša Klun , David Zorko , Leon Stojanov , Valentin Mirčeski , Vasko Jovanovski
{"title":"基于铜氧化还原介质外加电解质的气态H2O2安培传感器","authors":"Urša Klun , David Zorko , Leon Stojanov , Valentin Mirčeski , Vasko Jovanovski","doi":"10.1016/j.snr.2023.100144","DOIUrl":null,"url":null,"abstract":"<div><p>The determination of gases and other volatile compounds using electrochemical gas sensors remains a challenge with respect to sensitivity and selectivity. Many real-life situations require fast, sensitive, and yet easy-to-operate sensors for gaseous hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) that can operate at room temperature. Herein, we present an H<sub>2</sub>O<sub>2</sub> gas sensor comprising a polyacrylic acid and NaOH gel electrolyte that included Cu(II) ions acting as a redox mediator and commercially available screen-printed carbon electrodes. Aqueous polyacrylate gel electrolyte containing Cu(II) provided for sensing material that enabled the accumulation and stabilization of the gaseous analyte and via redox interaction with Cu(II) its fast and sensitive detection. The designed sensor exhibited good sensitivity in the low mg m<sup>−3</sup> range with a wide linear response in the examined concentration range of 10–100 mg m<sup>−3</sup> and a rapid detection after only 2 min accumulation under ambient conditions. Sensor's relatively simple setup and solid electroanalytical performance have strong application potential in emerging fields such as clinical diagnostics, explosive detection, environmental monitoring and occupational health and safety.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"5 ","pages":"Article 100144"},"PeriodicalIF":6.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Amperometric sensor for gaseous H2O2 based on copper redox mediator incorporated electrolyte\",\"authors\":\"Urša Klun , David Zorko , Leon Stojanov , Valentin Mirčeski , Vasko Jovanovski\",\"doi\":\"10.1016/j.snr.2023.100144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The determination of gases and other volatile compounds using electrochemical gas sensors remains a challenge with respect to sensitivity and selectivity. Many real-life situations require fast, sensitive, and yet easy-to-operate sensors for gaseous hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) that can operate at room temperature. Herein, we present an H<sub>2</sub>O<sub>2</sub> gas sensor comprising a polyacrylic acid and NaOH gel electrolyte that included Cu(II) ions acting as a redox mediator and commercially available screen-printed carbon electrodes. Aqueous polyacrylate gel electrolyte containing Cu(II) provided for sensing material that enabled the accumulation and stabilization of the gaseous analyte and via redox interaction with Cu(II) its fast and sensitive detection. The designed sensor exhibited good sensitivity in the low mg m<sup>−3</sup> range with a wide linear response in the examined concentration range of 10–100 mg m<sup>−3</sup> and a rapid detection after only 2 min accumulation under ambient conditions. Sensor's relatively simple setup and solid electroanalytical performance have strong application potential in emerging fields such as clinical diagnostics, explosive detection, environmental monitoring and occupational health and safety.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"5 \",\"pages\":\"Article 100144\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053923000073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053923000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Amperometric sensor for gaseous H2O2 based on copper redox mediator incorporated electrolyte
The determination of gases and other volatile compounds using electrochemical gas sensors remains a challenge with respect to sensitivity and selectivity. Many real-life situations require fast, sensitive, and yet easy-to-operate sensors for gaseous hydrogen peroxide (H2O2) that can operate at room temperature. Herein, we present an H2O2 gas sensor comprising a polyacrylic acid and NaOH gel electrolyte that included Cu(II) ions acting as a redox mediator and commercially available screen-printed carbon electrodes. Aqueous polyacrylate gel electrolyte containing Cu(II) provided for sensing material that enabled the accumulation and stabilization of the gaseous analyte and via redox interaction with Cu(II) its fast and sensitive detection. The designed sensor exhibited good sensitivity in the low mg m−3 range with a wide linear response in the examined concentration range of 10–100 mg m−3 and a rapid detection after only 2 min accumulation under ambient conditions. Sensor's relatively simple setup and solid electroanalytical performance have strong application potential in emerging fields such as clinical diagnostics, explosive detection, environmental monitoring and occupational health and safety.
期刊介绍:
Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications.
For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.