基于微生物的磁性纳米颗粒生产:一个小回顾。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY Integrative Biology Pub Date : 2021-04-20 DOI:10.1093/intbio/zyab005
Victor Chmykhalo, Anna Belanova, Mariya Belousova, Vera Butova, Yuriy Makarenko, Vera Khrenkova, Alexander Soldatov, Peter Zolotukhin
{"title":"基于微生物的磁性纳米颗粒生产:一个小回顾。","authors":"Victor Chmykhalo,&nbsp;Anna Belanova,&nbsp;Mariya Belousova,&nbsp;Vera Butova,&nbsp;Yuriy Makarenko,&nbsp;Vera Khrenkova,&nbsp;Alexander Soldatov,&nbsp;Peter Zolotukhin","doi":"10.1093/intbio/zyab005","DOIUrl":null,"url":null,"abstract":"<p><p>The ever-increasing biomedical application of magnetic nanoparticles (MNPs) implies increasing demand in their scalable and high-throughput production, with finely tuned and well-controlled characteristics. One of the options to meet the demand is microbial production by nanoparticles-synthesizing bacteria. This approach has several benefits over the standard chemical synthesis methods, including improved homogeneity of synthesis, cost-effectiveness, safety and eco-friendliness. There are, however, specific challenges emanating from the nature of the approach that are to be accounted and resolved in each manufacturing instance. Most of the challenges can be resolved by proper selection of the producing organism and optimizing cell culture and nanoparticles extraction conditions. Other issues require development of proper continuous production equipment, medium usage optimization and precursor ions recycling. This mini-review focuses on the related topics in microbial synthesis of MNPs: producing organisms, culturing methods, nanoparticles characteristics tuning, nanoparticles yield and synthesis timeframe considerations, nanoparticles isolation as well as on the respective challenges and possible solutions.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"13 4","pages":"98-107"},"PeriodicalIF":1.5000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/intbio/zyab005","citationCount":"3","resultStr":"{\"title\":\"Microbial-based magnetic nanoparticles production: a mini-review.\",\"authors\":\"Victor Chmykhalo,&nbsp;Anna Belanova,&nbsp;Mariya Belousova,&nbsp;Vera Butova,&nbsp;Yuriy Makarenko,&nbsp;Vera Khrenkova,&nbsp;Alexander Soldatov,&nbsp;Peter Zolotukhin\",\"doi\":\"10.1093/intbio/zyab005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ever-increasing biomedical application of magnetic nanoparticles (MNPs) implies increasing demand in their scalable and high-throughput production, with finely tuned and well-controlled characteristics. One of the options to meet the demand is microbial production by nanoparticles-synthesizing bacteria. This approach has several benefits over the standard chemical synthesis methods, including improved homogeneity of synthesis, cost-effectiveness, safety and eco-friendliness. There are, however, specific challenges emanating from the nature of the approach that are to be accounted and resolved in each manufacturing instance. Most of the challenges can be resolved by proper selection of the producing organism and optimizing cell culture and nanoparticles extraction conditions. Other issues require development of proper continuous production equipment, medium usage optimization and precursor ions recycling. This mini-review focuses on the related topics in microbial synthesis of MNPs: producing organisms, culturing methods, nanoparticles characteristics tuning, nanoparticles yield and synthesis timeframe considerations, nanoparticles isolation as well as on the respective challenges and possible solutions.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"13 4\",\"pages\":\"98-107\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/intbio/zyab005\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyab005\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyab005","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

磁性纳米颗粒(MNPs)的生物医学应用不断增加,这意味着对其可扩展和高通量生产的需求不断增加,这些生产具有精细调节和良好控制的特性。满足需求的一种选择是利用合成纳米颗粒的细菌进行微生物生产。与标准化学合成方法相比,这种方法有几个优点,包括提高合成的均匀性、成本效益、安全性和生态友好性。然而,在每个制造实例中都需要考虑和解决的方法的性质所产生的具体挑战。大多数挑战可以通过适当选择生产生物和优化细胞培养和纳米颗粒提取条件来解决。其他问题需要开发合适的连续生产设备,优化介质使用和前体离子回收。这篇综述主要介绍了微生物合成MNPs的相关主题:生产生物体,培养方法,纳米颗粒特性调整,纳米颗粒产量和合成时间框架考虑,纳米颗粒分离以及各自的挑战和可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial-based magnetic nanoparticles production: a mini-review.

The ever-increasing biomedical application of magnetic nanoparticles (MNPs) implies increasing demand in their scalable and high-throughput production, with finely tuned and well-controlled characteristics. One of the options to meet the demand is microbial production by nanoparticles-synthesizing bacteria. This approach has several benefits over the standard chemical synthesis methods, including improved homogeneity of synthesis, cost-effectiveness, safety and eco-friendliness. There are, however, specific challenges emanating from the nature of the approach that are to be accounted and resolved in each manufacturing instance. Most of the challenges can be resolved by proper selection of the producing organism and optimizing cell culture and nanoparticles extraction conditions. Other issues require development of proper continuous production equipment, medium usage optimization and precursor ions recycling. This mini-review focuses on the related topics in microbial synthesis of MNPs: producing organisms, culturing methods, nanoparticles characteristics tuning, nanoparticles yield and synthesis timeframe considerations, nanoparticles isolation as well as on the respective challenges and possible solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrative Biology
Integrative Biology 生物-细胞生物学
CiteScore
4.90
自引率
0.00%
发文量
15
审稿时长
1 months
期刊介绍: Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems. Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity. Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.
期刊最新文献
Modeling Shiga toxin-induced human renal-specific microvascular injury. The cellular zeta potential: cell electrophysiology beyond the membrane. Correction to: Mimicking the topography of the epidermal-dermal interface with elastomer substrates. Hub genes, key miRNAs and interaction analyses in type 2 diabetes mellitus: an integrative in silico approach. A Vicsek-type model of confined cancer cells with variable clustering affinities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1