微阵列图像的网格化和压缩。

Stefano Lonardi, Yu Luo
{"title":"微阵列图像的网格化和压缩。","authors":"Stefano Lonardi,&nbsp;Yu Luo","doi":"10.1109/csb.2004.1332424","DOIUrl":null,"url":null,"abstract":"<p><p>With the recent explosion of interest in microarray technology, massive amounts of microarray images are currently being produced. The storage and the transmission of this type of data are becoming increasingly challenging. Here we propose lossless and lossy compression algorithms for microarray images originally digitized at 16 bpp (bits per pixels) that achieve an average of 9.5 - 11.5 bpp (lossless) and 4.6 - 6.7 bpp (lossy, with a PSNR of 63 dB). The lossy compression is applied only on the background of the image, thereby preserving the regions of interest. The methods are based on a completely automatic gridding procedure of the image.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"122-30"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332424","citationCount":"0","resultStr":"{\"title\":\"Gridding and compression of microarray images.\",\"authors\":\"Stefano Lonardi,&nbsp;Yu Luo\",\"doi\":\"10.1109/csb.2004.1332424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the recent explosion of interest in microarray technology, massive amounts of microarray images are currently being produced. The storage and the transmission of this type of data are becoming increasingly challenging. Here we propose lossless and lossy compression algorithms for microarray images originally digitized at 16 bpp (bits per pixels) that achieve an average of 9.5 - 11.5 bpp (lossless) and 4.6 - 6.7 bpp (lossy, with a PSNR of 63 dB). The lossy compression is applied only on the background of the image, thereby preserving the regions of interest. The methods are based on a completely automatic gridding procedure of the image.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"122-30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2004.1332424\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2004.1332424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着最近对微阵列技术的兴趣激增,目前正在生产大量的微阵列图像。这类数据的存储和传输正变得越来越具有挑战性。在这里,我们提出了原始以16 bpp(比特每像素)数字化的微阵列图像的无损和有损压缩算法,平均达到9.5 - 11.5 bpp(无损)和4.6 - 6.7 bpp(有损,PSNR为63 dB)。有损压缩仅应用于图像的背景,从而保留感兴趣的区域。该方法基于图像的完全自动网格化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gridding and compression of microarray images.

With the recent explosion of interest in microarray technology, massive amounts of microarray images are currently being produced. The storage and the transmission of this type of data are becoming increasingly challenging. Here we propose lossless and lossy compression algorithms for microarray images originally digitized at 16 bpp (bits per pixels) that achieve an average of 9.5 - 11.5 bpp (lossless) and 4.6 - 6.7 bpp (lossy, with a PSNR of 63 dB). The lossy compression is applied only on the background of the image, thereby preserving the regions of interest. The methods are based on a completely automatic gridding procedure of the image.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1