通过质谱盲搜索鉴定翻译后修饰。

Dekel Tsur, Stephen Tanner, Ebrahim Zandi, Vineet Bafna, Pavel A Pevzner
{"title":"通过质谱盲搜索鉴定翻译后修饰。","authors":"Dekel Tsur,&nbsp;Stephen Tanner,&nbsp;Ebrahim Zandi,&nbsp;Vineet Bafna,&nbsp;Pavel A Pevzner","doi":"10.1109/csb.2005.34","DOIUrl":null,"url":null,"abstract":"<p><p>Post-translational modifications (PTMs) are of great biological importance. Most existing approaches perform a restrictive search that can only take into account a few types of PTMs and ignore all others. We describe an unrestrictive PTM search algorithm that searches for all types of PTMs at once in a blind mode, i.e., without knowing which PTMs exist in a sample. The blind PTM identification opens a possibility to study the extent and frequencies of different types of PTMs, still an open problem in proteomics. Using our new algorithm, we were able to construct a two-dimensional PTM frequency matrix that reflects the number of MS/MS spectra in a sample for each putative PTM type and each amino acid. Application of this approach to a large IKKb dataset resulted in the largest set of PTMs reported for a single MS/MS sample so far. We demonstrate an excellent correlation between high values in the PTM frequency matrix and known PTMs thus validating our approach. We further argue that the PTM frequency matrix may reveal some still unknown modifications that warrant further experimental validation.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"157-66"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.34","citationCount":"51","resultStr":"{\"title\":\"Identification of post-translational modifications via blind search of mass-spectra.\",\"authors\":\"Dekel Tsur,&nbsp;Stephen Tanner,&nbsp;Ebrahim Zandi,&nbsp;Vineet Bafna,&nbsp;Pavel A Pevzner\",\"doi\":\"10.1109/csb.2005.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Post-translational modifications (PTMs) are of great biological importance. Most existing approaches perform a restrictive search that can only take into account a few types of PTMs and ignore all others. We describe an unrestrictive PTM search algorithm that searches for all types of PTMs at once in a blind mode, i.e., without knowing which PTMs exist in a sample. The blind PTM identification opens a possibility to study the extent and frequencies of different types of PTMs, still an open problem in proteomics. Using our new algorithm, we were able to construct a two-dimensional PTM frequency matrix that reflects the number of MS/MS spectra in a sample for each putative PTM type and each amino acid. Application of this approach to a large IKKb dataset resulted in the largest set of PTMs reported for a single MS/MS sample so far. We demonstrate an excellent correlation between high values in the PTM frequency matrix and known PTMs thus validating our approach. We further argue that the PTM frequency matrix may reveal some still unknown modifications that warrant further experimental validation.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"157-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2005.34\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2005.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

翻译后修饰(PTMs)具有重要的生物学意义。大多数现有方法执行限制性搜索,只能考虑几种类型的ptm,而忽略所有其他类型。我们描述了一种无限制的PTM搜索算法,该算法在盲模式下搜索所有类型的PTM,即不知道样本中存在哪些PTM。PTM的盲鉴定为研究不同类型PTM的范围和频率提供了可能,这是蛋白质组学中尚未解决的问题。利用我们的新算法,我们能够构建一个二维PTM频率矩阵,该矩阵反映了样品中每种假定的PTM类型和每种氨基酸的MS/MS谱的数量。将这种方法应用于大型IKKb数据集,产生了迄今为止单个MS/MS样本报告的最大ptm集。我们证明了PTM频率矩阵中的高值与已知PTM之间的良好相关性,从而验证了我们的方法。我们进一步认为,PTM频率矩阵可能揭示了一些仍然未知的修改,需要进一步的实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of post-translational modifications via blind search of mass-spectra.

Post-translational modifications (PTMs) are of great biological importance. Most existing approaches perform a restrictive search that can only take into account a few types of PTMs and ignore all others. We describe an unrestrictive PTM search algorithm that searches for all types of PTMs at once in a blind mode, i.e., without knowing which PTMs exist in a sample. The blind PTM identification opens a possibility to study the extent and frequencies of different types of PTMs, still an open problem in proteomics. Using our new algorithm, we were able to construct a two-dimensional PTM frequency matrix that reflects the number of MS/MS spectra in a sample for each putative PTM type and each amino acid. Application of this approach to a large IKKb dataset resulted in the largest set of PTMs reported for a single MS/MS sample so far. We demonstrate an excellent correlation between high values in the PTM frequency matrix and known PTMs thus validating our approach. We further argue that the PTM frequency matrix may reveal some still unknown modifications that warrant further experimental validation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1