低分辨率串联质谱中多肽电荷态的测定。

Aaron A Klammer, Christine C Wu, Michael J MacCoss, William Stafford Noble
{"title":"低分辨率串联质谱中多肽电荷态的测定。","authors":"Aaron A Klammer,&nbsp;Christine C Wu,&nbsp;Michael J MacCoss,&nbsp;William Stafford Noble","doi":"10.1109/csb.2005.44","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry is a particularly useful technology for the rapid and robust identification of peptides and proteins in complex mixtures. Peptide sequences can be identified by correlating their observed tandem mass spectra (MS/MS) with theoretical spectra of peptides from a sequence database. Unfortunately, to perform this search the charge of the peptide must be known, and current chargestate- determination algorithms only discriminate singlyfrom multiply-charged spectra: distinguishing +2 from +3, for example, is unreliable. Thus, search software is forced to search multiply-charged spectra multiple times. To minimize this inefficiency, we present a support vector machine (SVM) that quickly and reliably classifies multiplycharged spectra as having either a +2 or +3 precursor peptide ion. By classifying multiply-charged spectra, we obtain a 40% reduction in search time while maintaining an average of 99% of peptide and 99% of protein identifications originally obtained from these spectra.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"175-85"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.44","citationCount":"36","resultStr":"{\"title\":\"Peptide charge state determination for low-resolution tandem mass spectra.\",\"authors\":\"Aaron A Klammer,&nbsp;Christine C Wu,&nbsp;Michael J MacCoss,&nbsp;William Stafford Noble\",\"doi\":\"10.1109/csb.2005.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass spectrometry is a particularly useful technology for the rapid and robust identification of peptides and proteins in complex mixtures. Peptide sequences can be identified by correlating their observed tandem mass spectra (MS/MS) with theoretical spectra of peptides from a sequence database. Unfortunately, to perform this search the charge of the peptide must be known, and current chargestate- determination algorithms only discriminate singlyfrom multiply-charged spectra: distinguishing +2 from +3, for example, is unreliable. Thus, search software is forced to search multiply-charged spectra multiple times. To minimize this inefficiency, we present a support vector machine (SVM) that quickly and reliably classifies multiplycharged spectra as having either a +2 or +3 precursor peptide ion. By classifying multiply-charged spectra, we obtain a 40% reduction in search time while maintaining an average of 99% of peptide and 99% of protein identifications originally obtained from these spectra.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"175-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2005.44\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2005.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

质谱法是一种特别有用的技术,可以快速、可靠地鉴定复杂混合物中的多肽和蛋白质。肽序列可以通过将观察到的串联质谱(MS/MS)与序列数据库中肽的理论谱相关联来鉴定。不幸的是,要进行这种搜索,肽的电荷必须是已知的,而目前的电荷状态测定算法只能区分单电荷和多电荷光谱:例如,区分+2和+3是不可靠的。因此,搜索软件被迫多次搜索多电荷谱。为了最大限度地降低这种低效率,我们提出了一种支持向量机(SVM),该支持向量机可以快速可靠地将多电荷光谱分类为具有+2或+3前体肽离子。通过对多电荷光谱进行分类,我们的搜索时间减少了40%,同时保持了从这些光谱中获得的99%的肽和99%的蛋白质鉴定的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Peptide charge state determination for low-resolution tandem mass spectra.

Mass spectrometry is a particularly useful technology for the rapid and robust identification of peptides and proteins in complex mixtures. Peptide sequences can be identified by correlating their observed tandem mass spectra (MS/MS) with theoretical spectra of peptides from a sequence database. Unfortunately, to perform this search the charge of the peptide must be known, and current chargestate- determination algorithms only discriminate singlyfrom multiply-charged spectra: distinguishing +2 from +3, for example, is unreliable. Thus, search software is forced to search multiply-charged spectra multiple times. To minimize this inefficiency, we present a support vector machine (SVM) that quickly and reliably classifies multiplycharged spectra as having either a +2 or +3 precursor peptide ion. By classifying multiply-charged spectra, we obtain a 40% reduction in search time while maintaining an average of 99% of peptide and 99% of protein identifications originally obtained from these spectra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1