基因本体友好的表达谱双聚类。

Jinze Liu, Wei Wang, Jiong Yang
{"title":"基因本体友好的表达谱双聚类。","authors":"Jinze Liu,&nbsp;Wei Wang,&nbsp;Jiong Yang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The soundness of clustering in the analysis of gene expression profiles and gene function prediction is based on the hypothesis that genes with similar expression profiles may imply strong correlations with their functions in the biological activities. Gene Ontology (GO) has become a well accepted standard in organizing gene function categories. Different gene function categories in GO can have very sophisticated relationships, such as 'part of' and 'overlapping'. Until now, no clustering algorithm can generate gene clusters within which the relationships can naturally reflect those of gene function categories in the GO hierarchy. The failure in resembling the relationships may reduce the confidence of clustering in gene function prediction. In this paper, we present a new clustering technique, Smart Hierarchical Tendency Preserving clustering (SHTP-clustering), based on a bicluster model, Tendency Preserving cluster (TP-Cluster). By directly incorporating Gene Ontology information into the clustering process, the SHTP-clustering algorithm yields a TP-cluster tree within which any subtree can be well mapped to a part of the GO hierarchy. Our experiments on yeast cell cycle data demonstrate that this method is efficient and effective in generating the biological relevant TP-Clusters.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"436-47"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Ontology friendly biclustering of expression profiles.\",\"authors\":\"Jinze Liu,&nbsp;Wei Wang,&nbsp;Jiong Yang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The soundness of clustering in the analysis of gene expression profiles and gene function prediction is based on the hypothesis that genes with similar expression profiles may imply strong correlations with their functions in the biological activities. Gene Ontology (GO) has become a well accepted standard in organizing gene function categories. Different gene function categories in GO can have very sophisticated relationships, such as 'part of' and 'overlapping'. Until now, no clustering algorithm can generate gene clusters within which the relationships can naturally reflect those of gene function categories in the GO hierarchy. The failure in resembling the relationships may reduce the confidence of clustering in gene function prediction. In this paper, we present a new clustering technique, Smart Hierarchical Tendency Preserving clustering (SHTP-clustering), based on a bicluster model, Tendency Preserving cluster (TP-Cluster). By directly incorporating Gene Ontology information into the clustering process, the SHTP-clustering algorithm yields a TP-cluster tree within which any subtree can be well mapped to a part of the GO hierarchy. Our experiments on yeast cell cycle data demonstrate that this method is efficient and effective in generating the biological relevant TP-Clusters.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"436-47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析在基因表达谱分析和基因功能预测中的合理性是基于一个假设,即具有相似表达谱的基因可能与它们在生物活动中的功能有很强的相关性。基因本体(Gene Ontology, GO)已成为组织基因功能分类的公认标准。GO中不同的基因功能类别可以有非常复杂的关系,例如“部分”和“重叠”。到目前为止,还没有一种聚类算法能够生成能够自然反映GO层次结构中基因功能类别关系的基因聚类。关系不相似会降低聚类在基因功能预测中的可信度。本文在趋势保持聚类(TP-Cluster)双聚类模型的基础上,提出了一种新的聚类技术——智能分层趋势保持聚类(SHTP-clustering)。通过将基因本体信息直接整合到聚类过程中,shtp -聚类算法产生了一个tp -聚类树,其中的任何子树都可以很好地映射到GO层次结构的一部分。我们对酵母细胞周期数据的实验表明,该方法在生成生物学相关的tp簇方面是高效和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gene Ontology friendly biclustering of expression profiles.

The soundness of clustering in the analysis of gene expression profiles and gene function prediction is based on the hypothesis that genes with similar expression profiles may imply strong correlations with their functions in the biological activities. Gene Ontology (GO) has become a well accepted standard in organizing gene function categories. Different gene function categories in GO can have very sophisticated relationships, such as 'part of' and 'overlapping'. Until now, no clustering algorithm can generate gene clusters within which the relationships can naturally reflect those of gene function categories in the GO hierarchy. The failure in resembling the relationships may reduce the confidence of clustering in gene function prediction. In this paper, we present a new clustering technique, Smart Hierarchical Tendency Preserving clustering (SHTP-clustering), based on a bicluster model, Tendency Preserving cluster (TP-Cluster). By directly incorporating Gene Ontology information into the clustering process, the SHTP-clustering algorithm yields a TP-cluster tree within which any subtree can be well mapped to a part of the GO hierarchy. Our experiments on yeast cell cycle data demonstrate that this method is efficient and effective in generating the biological relevant TP-Clusters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1