Vered Kunik, Zach Solan, Shimon Edelman, Eytan Ruppin, David Horn
{"title":"基序提取和蛋白质分类。","authors":"Vered Kunik, Zach Solan, Shimon Edelman, Eytan Ruppin, David Horn","doi":"10.1109/csb.2005.39","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel unsupervised method for extracting meaningful motifs from biological sequence data. This de novo motif extraction (MEX) algorithm is data driven, finding motifs that are not necessarily over-represented in the data. Applying MEX to the oxidoreductases class of enzymes, containing approximately 7000 enzyme sequences, a relatively small set of motifs is obtained. This set spans a motif-space that is used for functional classification of the enzymes by an SVM classifier. The classification based on MEX motifs surpasses that of two other SVM based methods: SVMProt, a method based on the analysis of physical-chemical properties of a protein generated from its sequence of amino acids, and SVM applied to a Smith-Waterman distances matrix. Our findings demonstrate that the MEX algorithm extracts relevant motifs, supporting a successful sequence-to-function classification.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"80-5"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.39","citationCount":"33","resultStr":"{\"title\":\"Motif extraction and protein classification.\",\"authors\":\"Vered Kunik, Zach Solan, Shimon Edelman, Eytan Ruppin, David Horn\",\"doi\":\"10.1109/csb.2005.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a novel unsupervised method for extracting meaningful motifs from biological sequence data. This de novo motif extraction (MEX) algorithm is data driven, finding motifs that are not necessarily over-represented in the data. Applying MEX to the oxidoreductases class of enzymes, containing approximately 7000 enzyme sequences, a relatively small set of motifs is obtained. This set spans a motif-space that is used for functional classification of the enzymes by an SVM classifier. The classification based on MEX motifs surpasses that of two other SVM based methods: SVMProt, a method based on the analysis of physical-chemical properties of a protein generated from its sequence of amino acids, and SVM applied to a Smith-Waterman distances matrix. Our findings demonstrate that the MEX algorithm extracts relevant motifs, supporting a successful sequence-to-function classification.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"80-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2005.39\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2005.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a novel unsupervised method for extracting meaningful motifs from biological sequence data. This de novo motif extraction (MEX) algorithm is data driven, finding motifs that are not necessarily over-represented in the data. Applying MEX to the oxidoreductases class of enzymes, containing approximately 7000 enzyme sequences, a relatively small set of motifs is obtained. This set spans a motif-space that is used for functional classification of the enzymes by an SVM classifier. The classification based on MEX motifs surpasses that of two other SVM based methods: SVMProt, a method based on the analysis of physical-chemical properties of a protein generated from its sequence of amino acids, and SVM applied to a Smith-Waterman distances matrix. Our findings demonstrate that the MEX algorithm extracts relevant motifs, supporting a successful sequence-to-function classification.