{"title":"一种用于基因表达数据中群体结构降维和提取的混合因子模型。","authors":"Ryo Yoshida, Tomoyuki Higuchi, Seiya Imoto","doi":"10.1109/csb.2004.1332429","DOIUrl":null,"url":null,"abstract":"<p><p>When we cluster tissue samples on the basis of genes, the number of observations to be grouped is much smaller than the dimension of feature vector. In such a case, the applicability of conventional model-based clustering is limited since the high dimensionality of feature vector leads to overfitting during the density estimation process. To overcome such difficulty, we attempt a methodological extension of the factor analysis. Our approach enables us not only to prevent from the occurrence of overfitting, but also to handle the issues of clustering, data compression and extracting a set of genes to be relevant to explain the group structure. The potential usefulness are demonstrated with the application to the leukemia dataset.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"161-72"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332429","citationCount":"0","resultStr":"{\"title\":\"A mixed factors model for dimension reduction and extraction of a group structure in gene expression data.\",\"authors\":\"Ryo Yoshida, Tomoyuki Higuchi, Seiya Imoto\",\"doi\":\"10.1109/csb.2004.1332429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When we cluster tissue samples on the basis of genes, the number of observations to be grouped is much smaller than the dimension of feature vector. In such a case, the applicability of conventional model-based clustering is limited since the high dimensionality of feature vector leads to overfitting during the density estimation process. To overcome such difficulty, we attempt a methodological extension of the factor analysis. Our approach enables us not only to prevent from the occurrence of overfitting, but also to handle the issues of clustering, data compression and extracting a set of genes to be relevant to explain the group structure. The potential usefulness are demonstrated with the application to the leukemia dataset.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"161-72\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2004.1332429\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2004.1332429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A mixed factors model for dimension reduction and extraction of a group structure in gene expression data.
When we cluster tissue samples on the basis of genes, the number of observations to be grouped is much smaller than the dimension of feature vector. In such a case, the applicability of conventional model-based clustering is limited since the high dimensionality of feature vector leads to overfitting during the density estimation process. To overcome such difficulty, we attempt a methodological extension of the factor analysis. Our approach enables us not only to prevent from the occurrence of overfitting, but also to handle the issues of clustering, data compression and extracting a set of genes to be relevant to explain the group structure. The potential usefulness are demonstrated with the application to the leukemia dataset.