共识遗传图谱:一种图论方法。

Benjamin N Jackson, Srinivas Aluru, Patrick S Schnable
{"title":"共识遗传图谱:一种图论方法。","authors":"Benjamin N Jackson,&nbsp;Srinivas Aluru,&nbsp;Patrick S Schnable","doi":"10.1109/csb.2005.26","DOIUrl":null,"url":null,"abstract":"<p><p>A genetic map is an ordering of genetic markers constructed from genetic linkage data for use in linkage studies and experimental design. While traditional methods have focused on constructing maps from a single population study, increasingly maps are generated for multiple lines and populations of the same organism. For example, in crop plants, where the genetic variability is high, researchers have created maps for many populations. In the face of these new data, we address the increasingly important problem of generating a consensus map - an ordering of all markers in the various population studies. In our method, each input map is treated as a partial order on a set of markers. To find the most consistent order shared between maps, we model the partial orders as directed graphs. We create an aggregate by merginging the transitive closure of the input graphs and taking the transitive reduction of the result. In this process, cycles may need to be broken to resolve inconsistencies between the inputs. The cycle breaking problem is NP-hard, but the problem size depends upon the scope of the inconsistency between the input graphs, which will be local if the input graphs are from closely related organisms. We present results of running the resulting software on maps generated from seven populations of the crop plant Zea Mays.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"35-43"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.26","citationCount":"20","resultStr":"{\"title\":\"Consensus genetic maps: a graph theoretic approach.\",\"authors\":\"Benjamin N Jackson,&nbsp;Srinivas Aluru,&nbsp;Patrick S Schnable\",\"doi\":\"10.1109/csb.2005.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A genetic map is an ordering of genetic markers constructed from genetic linkage data for use in linkage studies and experimental design. While traditional methods have focused on constructing maps from a single population study, increasingly maps are generated for multiple lines and populations of the same organism. For example, in crop plants, where the genetic variability is high, researchers have created maps for many populations. In the face of these new data, we address the increasingly important problem of generating a consensus map - an ordering of all markers in the various population studies. In our method, each input map is treated as a partial order on a set of markers. To find the most consistent order shared between maps, we model the partial orders as directed graphs. We create an aggregate by merginging the transitive closure of the input graphs and taking the transitive reduction of the result. In this process, cycles may need to be broken to resolve inconsistencies between the inputs. The cycle breaking problem is NP-hard, but the problem size depends upon the scope of the inconsistency between the input graphs, which will be local if the input graphs are from closely related organisms. We present results of running the resulting software on maps generated from seven populations of the crop plant Zea Mays.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"35-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2005.26\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2005.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

遗传图谱是从遗传连锁数据中构建的遗传标记的排序,用于连锁研究和实验设计。虽然传统方法侧重于从单一种群研究中构建地图,但越来越多的地图是为同一生物的多系和种群生成的。例如,在遗传变异性很高的农作物中,研究人员已经为许多种群绘制了图谱。面对这些新的数据,我们要处理一个日益重要的问题,即产生一个共识图- -对各种人口研究中的所有标记进行排序。在我们的方法中,每个输入映射都被视为一组标记上的偏序。为了找到映射之间共享的最一致的顺序,我们将偏序建模为有向图。我们通过合并输入图的传递闭包并对结果进行传递约简来创建聚合。在此过程中,可能需要打破循环以解决输入之间的不一致。循环打破问题是np困难的,但问题的大小取决于输入图之间不一致的范围,如果输入图来自密切相关的生物,则不一致将是局部的。我们展示了在7个玉米作物种群的地图上运行软件的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consensus genetic maps: a graph theoretic approach.

A genetic map is an ordering of genetic markers constructed from genetic linkage data for use in linkage studies and experimental design. While traditional methods have focused on constructing maps from a single population study, increasingly maps are generated for multiple lines and populations of the same organism. For example, in crop plants, where the genetic variability is high, researchers have created maps for many populations. In the face of these new data, we address the increasingly important problem of generating a consensus map - an ordering of all markers in the various population studies. In our method, each input map is treated as a partial order on a set of markers. To find the most consistent order shared between maps, we model the partial orders as directed graphs. We create an aggregate by merginging the transitive closure of the input graphs and taking the transitive reduction of the result. In this process, cycles may need to be broken to resolve inconsistencies between the inputs. The cycle breaking problem is NP-hard, but the problem size depends upon the scope of the inconsistency between the input graphs, which will be local if the input graphs are from closely related organisms. We present results of running the resulting software on maps generated from seven populations of the crop plant Zea Mays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1