利用扩增子熔化曲线自动验证聚合酶链反应。

Tobias P Mann, Richard Humbert, John A Stamatoyannopolous, William Stafford Noble
{"title":"利用扩增子熔化曲线自动验证聚合酶链反应。","authors":"Tobias P Mann,&nbsp;Richard Humbert,&nbsp;John A Stamatoyannopolous,&nbsp;William Stafford Noble","doi":"10.1109/csb.2005.17","DOIUrl":null,"url":null,"abstract":"<p><p>PCR, the polymerase chain reaction, is a fundamental tool of molecular biology. Quantitative PCR is the gold-standard methodology for determination of DNA copy numbers, quantitating transcription, and numerous other applications. A major barrier to large-scale application of PCR for quantitative genomic analyses is the current requirement for manual validation of individual PCR reactions to ensure generation of a single product. This typically requires visual inspection either of gel electrophoreses or temperature dissociation (\"melting\") curves of individual PCR reactions - a time-consuming and costly process. Here we describe a robust computational solution to this fundamental problem. Using a training set of 10,080 reactions comprising multiple quantitative PCR reactions from each of 1,728 unique human genomic amplicons, we developed a support vector machine classifier capable of discriminating single-product PCR reactions with better than 99% accuracy. This approach has broad utility, and eliminates a major bottleneck to widespread application of PCR for high-throughput genomic applications.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"377-85"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.17","citationCount":"4","resultStr":"{\"title\":\"Automated validation of polymerase chain reactions using amplicon melting curves.\",\"authors\":\"Tobias P Mann,&nbsp;Richard Humbert,&nbsp;John A Stamatoyannopolous,&nbsp;William Stafford Noble\",\"doi\":\"10.1109/csb.2005.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PCR, the polymerase chain reaction, is a fundamental tool of molecular biology. Quantitative PCR is the gold-standard methodology for determination of DNA copy numbers, quantitating transcription, and numerous other applications. A major barrier to large-scale application of PCR for quantitative genomic analyses is the current requirement for manual validation of individual PCR reactions to ensure generation of a single product. This typically requires visual inspection either of gel electrophoreses or temperature dissociation (\\\"melting\\\") curves of individual PCR reactions - a time-consuming and costly process. Here we describe a robust computational solution to this fundamental problem. Using a training set of 10,080 reactions comprising multiple quantitative PCR reactions from each of 1,728 unique human genomic amplicons, we developed a support vector machine classifier capable of discriminating single-product PCR reactions with better than 99% accuracy. This approach has broad utility, and eliminates a major bottleneck to widespread application of PCR for high-throughput genomic applications.</p>\",\"PeriodicalId\":87417,\"journal\":{\"name\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"volume\":\" \",\"pages\":\"377-85\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/csb.2005.17\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Computational Systems Bioinformatics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/csb.2005.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

聚合酶链反应(PCR)是分子生物学的基本工具。定量PCR是测定DNA拷贝数,定量转录和许多其他应用的金标准方法。大规模应用PCR进行定量基因组分析的一个主要障碍是目前需要手动验证单个PCR反应,以确保产生单一产物。这通常需要对单个PCR反应的凝胶电泳或温度解离(“融化”)曲线进行目视检查,这是一个耗时且昂贵的过程。在这里,我们描述了这个基本问题的一个健壮的计算解决方案。使用包含10080个反应的训练集,包括来自1728个独特的人类基因组扩增子的多个定量PCR反应,我们开发了一个支持向量机分类器,能够区分单产物PCR反应,准确率超过99%。这种方法具有广泛的实用性,消除了PCR在高通量基因组应用中广泛应用的主要瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated validation of polymerase chain reactions using amplicon melting curves.

PCR, the polymerase chain reaction, is a fundamental tool of molecular biology. Quantitative PCR is the gold-standard methodology for determination of DNA copy numbers, quantitating transcription, and numerous other applications. A major barrier to large-scale application of PCR for quantitative genomic analyses is the current requirement for manual validation of individual PCR reactions to ensure generation of a single product. This typically requires visual inspection either of gel electrophoreses or temperature dissociation ("melting") curves of individual PCR reactions - a time-consuming and costly process. Here we describe a robust computational solution to this fundamental problem. Using a training set of 10,080 reactions comprising multiple quantitative PCR reactions from each of 1,728 unique human genomic amplicons, we developed a support vector machine classifier capable of discriminating single-product PCR reactions with better than 99% accuracy. This approach has broad utility, and eliminates a major bottleneck to widespread application of PCR for high-throughput genomic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1