{"title":"微波光子学瞬时频率测量的最新进展","authors":"Lam Anh Bui","doi":"10.1016/j.pquantelec.2019.100237","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reviews the field of microwave photonics<span> instantaneous frequency measurements (IFM). It aims to consolidate the literature, explains the key implementations and reviews the recent developments. Current photonic IFMs are capable of operating over a wide bandwidth with a good resolution. However, their implementations are often based on discrete components and exhibit limited dynamic range and moderate efficiency. Photonic integration and improvements of dynamic range and efficiency are thus necessary, and they are anticipated as the future research directions and developments.</span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"69 ","pages":"Article 100237"},"PeriodicalIF":7.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100237","citationCount":"17","resultStr":"{\"title\":\"Recent advances in microwave photonics instantaneous frequency measurements\",\"authors\":\"Lam Anh Bui\",\"doi\":\"10.1016/j.pquantelec.2019.100237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reviews the field of microwave photonics<span> instantaneous frequency measurements (IFM). It aims to consolidate the literature, explains the key implementations and reviews the recent developments. Current photonic IFMs are capable of operating over a wide bandwidth with a good resolution. However, their implementations are often based on discrete components and exhibit limited dynamic range and moderate efficiency. Photonic integration and improvements of dynamic range and efficiency are thus necessary, and they are anticipated as the future research directions and developments.</span></p></div>\",\"PeriodicalId\":414,\"journal\":{\"name\":\"Progress in Quantum Electronics\",\"volume\":\"69 \",\"pages\":\"Article 100237\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.pquantelec.2019.100237\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Quantum Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079672719300436\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672719300436","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Recent advances in microwave photonics instantaneous frequency measurements
This paper reviews the field of microwave photonics instantaneous frequency measurements (IFM). It aims to consolidate the literature, explains the key implementations and reviews the recent developments. Current photonic IFMs are capable of operating over a wide bandwidth with a good resolution. However, their implementations are often based on discrete components and exhibit limited dynamic range and moderate efficiency. Photonic integration and improvements of dynamic range and efficiency are thus necessary, and they are anticipated as the future research directions and developments.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.