生物复杂性和药物发现:一个实用的系统生物学方法。

E L Berg, E J Kunkel, E Hytopoulos
{"title":"生物复杂性和药物发现:一个实用的系统生物学方法。","authors":"E L Berg,&nbsp;E J Kunkel,&nbsp;E Hytopoulos","doi":"10.1049/ip-syb:20050036","DOIUrl":null,"url":null,"abstract":"<p><p>Drugs fail in clinical studies most often from lack of efficacy or unexpected toxicities. These failures result from an inadequate understanding of drug action and follow, in part, from our dependence on drug discovery technologies that do not take into account the complexity of human disease biology. Biological systems exhibit many features of complex engineering systems, including modularity, redundancy, robustness, and emergent properties. Addressing these features has contributed to the successful design of an improved biological assay technology for inflammation drug discovery. This approach, termed Biologically Multiplexed Activity Profiling (BioMAP), involves the statistical analysis of protein datasets generated from novel complex primary human cell-based assay systems. Compound profiling in these systems has revealed that a surprisingly large number of biological mechanisms can be detected and distinguished. Features of these assays relevant to the behaviour of complex systems are described.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"152 4","pages":"201-6"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050036","citationCount":"30","resultStr":"{\"title\":\"Biological complexity and drug discovery: a practical systems biology approach.\",\"authors\":\"E L Berg,&nbsp;E J Kunkel,&nbsp;E Hytopoulos\",\"doi\":\"10.1049/ip-syb:20050036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drugs fail in clinical studies most often from lack of efficacy or unexpected toxicities. These failures result from an inadequate understanding of drug action and follow, in part, from our dependence on drug discovery technologies that do not take into account the complexity of human disease biology. Biological systems exhibit many features of complex engineering systems, including modularity, redundancy, robustness, and emergent properties. Addressing these features has contributed to the successful design of an improved biological assay technology for inflammation drug discovery. This approach, termed Biologically Multiplexed Activity Profiling (BioMAP), involves the statistical analysis of protein datasets generated from novel complex primary human cell-based assay systems. Compound profiling in these systems has revealed that a surprisingly large number of biological mechanisms can be detected and distinguished. Features of these assays relevant to the behaviour of complex systems are described.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"152 4\",\"pages\":\"201-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20050036\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20050036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

药物在临床研究中失败的最常见原因是缺乏疗效或意想不到的毒性。这些失败的原因是对药物作用的理解不足,部分原因是我们依赖于没有考虑到人类疾病生物学复杂性的药物发现技术。生物系统表现出复杂工程系统的许多特征,包括模块化、冗余、鲁棒性和涌现性。解决这些特点有助于成功设计一种用于炎症药物发现的改进的生物测定技术。这种方法被称为生物多路活性分析(BioMAP),涉及对基于新型复杂原代人细胞的测定系统产生的蛋白质数据集进行统计分析。这些系统中的化合物分析表明,可以检测和区分惊人数量的生物机制。描述了与复杂系统的行为相关的这些分析的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biological complexity and drug discovery: a practical systems biology approach.

Drugs fail in clinical studies most often from lack of efficacy or unexpected toxicities. These failures result from an inadequate understanding of drug action and follow, in part, from our dependence on drug discovery technologies that do not take into account the complexity of human disease biology. Biological systems exhibit many features of complex engineering systems, including modularity, redundancy, robustness, and emergent properties. Addressing these features has contributed to the successful design of an improved biological assay technology for inflammation drug discovery. This approach, termed Biologically Multiplexed Activity Profiling (BioMAP), involves the statistical analysis of protein datasets generated from novel complex primary human cell-based assay systems. Compound profiling in these systems has revealed that a surprisingly large number of biological mechanisms can be detected and distinguished. Features of these assays relevant to the behaviour of complex systems are described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systems theory of Smad signalling. Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation. Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1