{"title":"趋化反应扩散系统自组织动力学的外部最优控制。","authors":"D Lebiedz, H Maurer","doi":"10.1049/sb:20045022","DOIUrl":null,"url":null,"abstract":"<p><p>Detailed quantitative understanding and specific external control of cellular behaviour are general long-term goals of modem bioscience research activities in systems biology. Pattern formation and self-organisation processes both in single cells and in distributed cell populations are phenomena which are highly significant for the functionality of life, because life requires to maintain a highly organised spatiotemporal system structure. In particular chemotaxis is crucial for various biological aspects of intercellular signalling and cell aggregation. As an example for model based control of self-organising biological systems, we describe numerical optimal control of E. coli bacterial chemotaxis based on a 1-D two-component partial differential equation (PDE) model of reaction diffusion type. We present a numerical scheme to force cell aggregation patterns to particular desired results by applying a boundary influx control of chemoattractant without interfering with the system itself. Optimal controls are numerically computed by using a specially tailored interior point optimisation technique applied to a direct collocation discretisation of the control function and the PDE constraint. The objective to be minimised is the deviation of a desired cell distribution from the cell density, which results from the dynamics of the controlled system.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"1 2","pages":"222-9"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/sb:20045022","citationCount":"27","resultStr":"{\"title\":\"External optimal control of self-organisation dynamics in a chemotaxis reaction diffusion system.\",\"authors\":\"D Lebiedz, H Maurer\",\"doi\":\"10.1049/sb:20045022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detailed quantitative understanding and specific external control of cellular behaviour are general long-term goals of modem bioscience research activities in systems biology. Pattern formation and self-organisation processes both in single cells and in distributed cell populations are phenomena which are highly significant for the functionality of life, because life requires to maintain a highly organised spatiotemporal system structure. In particular chemotaxis is crucial for various biological aspects of intercellular signalling and cell aggregation. As an example for model based control of self-organising biological systems, we describe numerical optimal control of E. coli bacterial chemotaxis based on a 1-D two-component partial differential equation (PDE) model of reaction diffusion type. We present a numerical scheme to force cell aggregation patterns to particular desired results by applying a boundary influx control of chemoattractant without interfering with the system itself. Optimal controls are numerically computed by using a specially tailored interior point optimisation technique applied to a direct collocation discretisation of the control function and the PDE constraint. The objective to be minimised is the deviation of a desired cell distribution from the cell density, which results from the dynamics of the controlled system.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"1 2\",\"pages\":\"222-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/sb:20045022\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/sb:20045022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sb:20045022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
External optimal control of self-organisation dynamics in a chemotaxis reaction diffusion system.
Detailed quantitative understanding and specific external control of cellular behaviour are general long-term goals of modem bioscience research activities in systems biology. Pattern formation and self-organisation processes both in single cells and in distributed cell populations are phenomena which are highly significant for the functionality of life, because life requires to maintain a highly organised spatiotemporal system structure. In particular chemotaxis is crucial for various biological aspects of intercellular signalling and cell aggregation. As an example for model based control of self-organising biological systems, we describe numerical optimal control of E. coli bacterial chemotaxis based on a 1-D two-component partial differential equation (PDE) model of reaction diffusion type. We present a numerical scheme to force cell aggregation patterns to particular desired results by applying a boundary influx control of chemoattractant without interfering with the system itself. Optimal controls are numerically computed by using a specially tailored interior point optimisation technique applied to a direct collocation discretisation of the control function and the PDE constraint. The objective to be minimised is the deviation of a desired cell distribution from the cell density, which results from the dynamics of the controlled system.