{"title":"非线性随机基因调控网络中的信号传播。","authors":"S Achimescu, O Lipan","doi":"10.1049/ip-syb:20050027","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to build genetic circuits with a reproducible response to external stimuli depends on the experimental and theoretical methods used in the process. A theoretical formalism that describes the response of a nonlinear stochastic genetic network to the external stimuli (input signals), is proposed. Two applications are studied in detail: the design of a logic pulse and the interference of three signal generators in the E2F1 regulatory element. The gene interactions are presented using molecular diagrams that have a precise mathematical structure and retain the biological meaning of the processes.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 3","pages":"120-34"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050027","citationCount":"14","resultStr":"{\"title\":\"Signal propagation in nonlinear stochastic gene regulatory networks.\",\"authors\":\"S Achimescu, O Lipan\",\"doi\":\"10.1049/ip-syb:20050027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to build genetic circuits with a reproducible response to external stimuli depends on the experimental and theoretical methods used in the process. A theoretical formalism that describes the response of a nonlinear stochastic genetic network to the external stimuli (input signals), is proposed. Two applications are studied in detail: the design of a logic pulse and the interference of three signal generators in the E2F1 regulatory element. The gene interactions are presented using molecular diagrams that have a precise mathematical structure and retain the biological meaning of the processes.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"153 3\",\"pages\":\"120-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20050027\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20050027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signal propagation in nonlinear stochastic gene regulatory networks.
The ability to build genetic circuits with a reproducible response to external stimuli depends on the experimental and theoretical methods used in the process. A theoretical formalism that describes the response of a nonlinear stochastic genetic network to the external stimuli (input signals), is proposed. Two applications are studied in detail: the design of a logic pulse and the interference of three signal generators in the E2F1 regulatory element. The gene interactions are presented using molecular diagrams that have a precise mathematical structure and retain the biological meaning of the processes.