双底物希尔方程预测变构改性剂饱和度的实验证据。

A J Hanekom, J H S Hofmeyr, J L Snoep, J M Rohwer
{"title":"双底物希尔方程预测变构改性剂饱和度的实验证据。","authors":"A J Hanekom,&nbsp;J H S Hofmeyr,&nbsp;J L Snoep,&nbsp;J M Rohwer","doi":"10.1049/ip-syb:20060029","DOIUrl":null,"url":null,"abstract":"<p><p>The cooperative enzyme reaction rates predicted by the bi-substrate Hill equation and the bi-substrate Monod-Wyman-Changeux (MWC) equation when allosterically inhibited are compared in silico. Theoretically, the Hill equation predicts that when the maximum inhibitory effect at a certain substrate condition has been reached, an increase in allosteric inhibitor concentration will have no effect on reaction rate, that is the Hill equation shows allosteric inhibitor saturation. This saturating inhibitory effect is not present in the MWC equation. Experimental in vitro data for pyruvate kinase, a bi-substrate cooperative enzyme that is allosterically inhibited, are presented. This enzyme also shows inhibitor saturation, and therefore serves as experimental evidence that the bi-substrate Hill equation predicts more realistic allosteric inhibitor behaviour than the bi-substrate MWC equation.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 5","pages":"342-5"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20060029","citationCount":"0","resultStr":"{\"title\":\"Experimental evidence for allosteric modifier saturation as predicted by the bi-substrate Hill equation.\",\"authors\":\"A J Hanekom,&nbsp;J H S Hofmeyr,&nbsp;J L Snoep,&nbsp;J M Rohwer\",\"doi\":\"10.1049/ip-syb:20060029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cooperative enzyme reaction rates predicted by the bi-substrate Hill equation and the bi-substrate Monod-Wyman-Changeux (MWC) equation when allosterically inhibited are compared in silico. Theoretically, the Hill equation predicts that when the maximum inhibitory effect at a certain substrate condition has been reached, an increase in allosteric inhibitor concentration will have no effect on reaction rate, that is the Hill equation shows allosteric inhibitor saturation. This saturating inhibitory effect is not present in the MWC equation. Experimental in vitro data for pyruvate kinase, a bi-substrate cooperative enzyme that is allosterically inhibited, are presented. This enzyme also shows inhibitor saturation, and therefore serves as experimental evidence that the bi-substrate Hill equation predicts more realistic allosteric inhibitor behaviour than the bi-substrate MWC equation.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"153 5\",\"pages\":\"342-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20060029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20060029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20060029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

比较了在变构抑制条件下,双底物Hill方程和双底物Monod-Wyman-Changeux (MWC)方程预测的协同酶反应速率。从理论上讲,Hill方程预测当达到一定底物条件下的最大抑制效果时,变构抑制剂浓度的增加对反应速率没有影响,即Hill方程表明变构抑制剂饱和。这种饱和抑制效应不存在于MWC方程中。丙酮酸激酶的体外实验数据,是一种双底物合作酶,是变构抑制,提出。该酶也显示抑制剂饱和,因此作为实验证据,双底物Hill方程比双底物MWC方程更能预测变构抑制剂的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental evidence for allosteric modifier saturation as predicted by the bi-substrate Hill equation.

The cooperative enzyme reaction rates predicted by the bi-substrate Hill equation and the bi-substrate Monod-Wyman-Changeux (MWC) equation when allosterically inhibited are compared in silico. Theoretically, the Hill equation predicts that when the maximum inhibitory effect at a certain substrate condition has been reached, an increase in allosteric inhibitor concentration will have no effect on reaction rate, that is the Hill equation shows allosteric inhibitor saturation. This saturating inhibitory effect is not present in the MWC equation. Experimental in vitro data for pyruvate kinase, a bi-substrate cooperative enzyme that is allosterically inhibited, are presented. This enzyme also shows inhibitor saturation, and therefore serves as experimental evidence that the bi-substrate Hill equation predicts more realistic allosteric inhibitor behaviour than the bi-substrate MWC equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systems theory of Smad signalling. Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation. Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1