{"title":"代谢网络及其生物合成能力的进化变化。","authors":"O Ebenhöh, T Handorf, D Kahn","doi":"10.1049/ip-syb:20060014","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic networks of different species show a large variety in their structural design. In this work, the evolution of functional properties of metabolism in relation with metabolic network structure is investigated. The metabolism of ancestral species is inferred from the metabolism of contemporary species using a Bayesian network model for metabolism evolution. Subsequently, these networks are analysed with the recently developed method of network expansion. This method allows for a structural analysis of metabolic networks as well as a quantification of network functions in terms of their synthesising capacities when they are provided with certain external resources. The evolutionary dynamics of one particular network function: the metabolic expansion of glucose is investigated.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 5","pages":"354-8"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20060014","citationCount":"27","resultStr":"{\"title\":\"Evolutionary changes of metabolic networks and their biosynthetic capacities.\",\"authors\":\"O Ebenhöh, T Handorf, D Kahn\",\"doi\":\"10.1049/ip-syb:20060014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metabolic networks of different species show a large variety in their structural design. In this work, the evolution of functional properties of metabolism in relation with metabolic network structure is investigated. The metabolism of ancestral species is inferred from the metabolism of contemporary species using a Bayesian network model for metabolism evolution. Subsequently, these networks are analysed with the recently developed method of network expansion. This method allows for a structural analysis of metabolic networks as well as a quantification of network functions in terms of their synthesising capacities when they are provided with certain external resources. The evolutionary dynamics of one particular network function: the metabolic expansion of glucose is investigated.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"153 5\",\"pages\":\"354-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20060014\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20060014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20060014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary changes of metabolic networks and their biosynthetic capacities.
The metabolic networks of different species show a large variety in their structural design. In this work, the evolution of functional properties of metabolism in relation with metabolic network structure is investigated. The metabolism of ancestral species is inferred from the metabolism of contemporary species using a Bayesian network model for metabolism evolution. Subsequently, these networks are analysed with the recently developed method of network expansion. This method allows for a structural analysis of metabolic networks as well as a quantification of network functions in terms of their synthesising capacities when they are provided with certain external resources. The evolutionary dynamics of one particular network function: the metabolic expansion of glucose is investigated.