N Yalamanchili, D E Zak, B A Ogunnaike, J S Schwaber, A Kriete, B N Kholodenko
{"title":"量化基因网络连通性:模块化方法的可扩展性和准确性。","authors":"N Yalamanchili, D E Zak, B A Ogunnaike, J S Schwaber, A Kriete, B N Kholodenko","doi":"10.1049/ip-syb:20050090","DOIUrl":null,"url":null,"abstract":"<p><p>Large, complex data sets that are generated from microarray experiments, create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene's mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analysing in silico steady-state changes in the activities of only the module outputs, communicating intermediates, that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, the accuracy of the modular approach and its sensitivity to key assumptions are evaluated.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 4","pages":"236-46"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050090","citationCount":"10","resultStr":"{\"title\":\"Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach.\",\"authors\":\"N Yalamanchili, D E Zak, B A Ogunnaike, J S Schwaber, A Kriete, B N Kholodenko\",\"doi\":\"10.1049/ip-syb:20050090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large, complex data sets that are generated from microarray experiments, create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene's mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analysing in silico steady-state changes in the activities of only the module outputs, communicating intermediates, that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, the accuracy of the modular approach and its sensitivity to key assumptions are evaluated.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"153 4\",\"pages\":\"236-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20050090\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20050090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach.
Large, complex data sets that are generated from microarray experiments, create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene's mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analysing in silico steady-state changes in the activities of only the module outputs, communicating intermediates, that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, the accuracy of the modular approach and its sensitivity to key assumptions are evaluated.