{"title":"Smad信号的系统理论。","authors":"D C Clarke, M D Betterton, X Liu","doi":"10.1049/ip-syb:20050055","DOIUrl":null,"url":null,"abstract":"<p><p>Transforming growth factor-beta (TGFbeta) signalling is an important regulator of cellular growth and differentiation. The principal intracellular mediators of TGFbeta signalling are the Smad proteins, which upon TGFbeta stimulation accumulate in the nucleus and regulate the transcription of target genes. To investigate the mechanisms of Smad nuclear accumulation, we developed a simple mathematical model of canonical Smad signalling. The model was built using both published data and our experimentally determined cellular Smad concentrations (isoforms 2, 3 and 4). We found in mink lung epithelial cells that Smad2 (8.5-12 x 10(4) molecules cell(-1)) was present in similar amounts to Smad4 (9.3-12 x 10(4) molecules cell(-1)), whereas both were in excess of Smad3 (1.1-2.0 x 10(4) molecules cell(-1)). Variation of the model parameters and statistical analysis showed that Smad nuclear accumulation is most sensitive to parameters affecting the rates of R-Smad phosphorylation and dephosphorylation and Smad complex formation/ dissociation in the nucleus. Deleting Smad4 from the model revealed that rate-limiting phospho-R-Smad dephosphorylation could be an important mechanism for Smad nuclear accumulation. Furthermore, we observed that binding factors constitutively localised to the nucleus do not efficiently mediate Smad nuclear accumulation, if dephosphorylation is rapid. We therefore conclude that an imbalance in the rates of R-Smad phosphorylation and dephosphorylation is likely an important mechanism of Smad nuclear accumulation during TGFbeta signalling.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 6","pages":"412-24"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050055","citationCount":"58","resultStr":"{\"title\":\"Systems theory of Smad signalling.\",\"authors\":\"D C Clarke, M D Betterton, X Liu\",\"doi\":\"10.1049/ip-syb:20050055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transforming growth factor-beta (TGFbeta) signalling is an important regulator of cellular growth and differentiation. The principal intracellular mediators of TGFbeta signalling are the Smad proteins, which upon TGFbeta stimulation accumulate in the nucleus and regulate the transcription of target genes. To investigate the mechanisms of Smad nuclear accumulation, we developed a simple mathematical model of canonical Smad signalling. The model was built using both published data and our experimentally determined cellular Smad concentrations (isoforms 2, 3 and 4). We found in mink lung epithelial cells that Smad2 (8.5-12 x 10(4) molecules cell(-1)) was present in similar amounts to Smad4 (9.3-12 x 10(4) molecules cell(-1)), whereas both were in excess of Smad3 (1.1-2.0 x 10(4) molecules cell(-1)). Variation of the model parameters and statistical analysis showed that Smad nuclear accumulation is most sensitive to parameters affecting the rates of R-Smad phosphorylation and dephosphorylation and Smad complex formation/ dissociation in the nucleus. Deleting Smad4 from the model revealed that rate-limiting phospho-R-Smad dephosphorylation could be an important mechanism for Smad nuclear accumulation. Furthermore, we observed that binding factors constitutively localised to the nucleus do not efficiently mediate Smad nuclear accumulation, if dephosphorylation is rapid. We therefore conclude that an imbalance in the rates of R-Smad phosphorylation and dephosphorylation is likely an important mechanism of Smad nuclear accumulation during TGFbeta signalling.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"153 6\",\"pages\":\"412-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20050055\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20050055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58
摘要
转化生长因子- β (tgfβ)信号是细胞生长和分化的重要调节因子。tgf - β信号传导的主要细胞内介质是Smad蛋白,在tgf - β刺激下,Smad蛋白在细胞核中积累并调节靶基因的转录。为了研究Smad核积累的机制,我们建立了一个简单的标准Smad信号传导的数学模型。该模型是利用已发表的数据和我们通过实验确定的细胞Smad浓度(异构体2、3和4)建立的。我们发现,在水貂肺上皮细胞中,Smad2 (8.5-12 x 10(4)分子细胞(-1))与Smad4 (9.3-12 x 10(4)分子细胞(-1))的含量相似,而两者都超过Smad3 (1.1-2.0 x 10(4)分子细胞(-1))。模型参数的变化和统计分析表明,影响R-Smad磷酸化和去磷酸化以及Smad复合物形成/解离速率的参数对Smad核积累最为敏感。从模型中删除Smad4表明,限速磷酸化r -Smad去磷酸化可能是Smad核积累的重要机制。此外,我们观察到,如果快速去磷酸化,组成部分定位于细胞核的结合因子不能有效地介导Smad核积累。因此,我们得出结论,R-Smad磷酸化和去磷酸化速率的不平衡可能是tgf - β信号传导过程中Smad核积累的重要机制。
Transforming growth factor-beta (TGFbeta) signalling is an important regulator of cellular growth and differentiation. The principal intracellular mediators of TGFbeta signalling are the Smad proteins, which upon TGFbeta stimulation accumulate in the nucleus and regulate the transcription of target genes. To investigate the mechanisms of Smad nuclear accumulation, we developed a simple mathematical model of canonical Smad signalling. The model was built using both published data and our experimentally determined cellular Smad concentrations (isoforms 2, 3 and 4). We found in mink lung epithelial cells that Smad2 (8.5-12 x 10(4) molecules cell(-1)) was present in similar amounts to Smad4 (9.3-12 x 10(4) molecules cell(-1)), whereas both were in excess of Smad3 (1.1-2.0 x 10(4) molecules cell(-1)). Variation of the model parameters and statistical analysis showed that Smad nuclear accumulation is most sensitive to parameters affecting the rates of R-Smad phosphorylation and dephosphorylation and Smad complex formation/ dissociation in the nucleus. Deleting Smad4 from the model revealed that rate-limiting phospho-R-Smad dephosphorylation could be an important mechanism for Smad nuclear accumulation. Furthermore, we observed that binding factors constitutively localised to the nucleus do not efficiently mediate Smad nuclear accumulation, if dephosphorylation is rapid. We therefore conclude that an imbalance in the rates of R-Smad phosphorylation and dephosphorylation is likely an important mechanism of Smad nuclear accumulation during TGFbeta signalling.