{"title":"在识别接近Hopf分岔的系统时,消除初始值参数。","authors":"G Cedersund","doi":"10.1049/ip-syb:20050068","DOIUrl":null,"url":null,"abstract":"<p><p>One of the biggest problems when performing system identification of biological systems is that it is seldom possible to measure more than a small fraction of the total number of variables. If that is the case, the initial state, from where the simulation should start, has to be estimated along with the kinetic parameters appearing in the rate expressions. This is often done by introducing extra parameters, describing the initial state, and one way to eliminate them is by starting in a steady state. We report a generalisation of this approach to all systems starting on the centre manifold, close to a Hopf bifurcation. There exist biochemical systems where such data have already been collected, for example, of glycolysis in yeast. The initial value parameters are solved for in an optimisation sub-problem, for each step in the estimation of the other parameters. For systems starting in stationary oscillations, the sub-problem is solved in a straight-forward manner, without integration of the differential equations, and without the problem of local minima. This is possible because of a combination of a centre manifold and normal form reduction, which reveals the special structure of the Hopf bifurcation. The advantage of the method is demonstrated on the Brusselator.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 6","pages":"448-56"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050068","citationCount":"0","resultStr":"{\"title\":\"Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation.\",\"authors\":\"G Cedersund\",\"doi\":\"10.1049/ip-syb:20050068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the biggest problems when performing system identification of biological systems is that it is seldom possible to measure more than a small fraction of the total number of variables. If that is the case, the initial state, from where the simulation should start, has to be estimated along with the kinetic parameters appearing in the rate expressions. This is often done by introducing extra parameters, describing the initial state, and one way to eliminate them is by starting in a steady state. We report a generalisation of this approach to all systems starting on the centre manifold, close to a Hopf bifurcation. There exist biochemical systems where such data have already been collected, for example, of glycolysis in yeast. The initial value parameters are solved for in an optimisation sub-problem, for each step in the estimation of the other parameters. For systems starting in stationary oscillations, the sub-problem is solved in a straight-forward manner, without integration of the differential equations, and without the problem of local minima. This is possible because of a combination of a centre manifold and normal form reduction, which reveals the special structure of the Hopf bifurcation. The advantage of the method is demonstrated on the Brusselator.</p>\",\"PeriodicalId\":87457,\"journal\":{\"name\":\"Systems biology\",\"volume\":\"153 6\",\"pages\":\"448-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1049/ip-syb:20050068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/ip-syb:20050068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation.
One of the biggest problems when performing system identification of biological systems is that it is seldom possible to measure more than a small fraction of the total number of variables. If that is the case, the initial state, from where the simulation should start, has to be estimated along with the kinetic parameters appearing in the rate expressions. This is often done by introducing extra parameters, describing the initial state, and one way to eliminate them is by starting in a steady state. We report a generalisation of this approach to all systems starting on the centre manifold, close to a Hopf bifurcation. There exist biochemical systems where such data have already been collected, for example, of glycolysis in yeast. The initial value parameters are solved for in an optimisation sub-problem, for each step in the estimation of the other parameters. For systems starting in stationary oscillations, the sub-problem is solved in a straight-forward manner, without integration of the differential equations, and without the problem of local minima. This is possible because of a combination of a centre manifold and normal form reduction, which reveals the special structure of the Hopf bifurcation. The advantage of the method is demonstrated on the Brusselator.