Sripad Ram, Prashant Prabhat, Jerry Chao, Anish V Abraham, E Sally Ward, Raimund J Ober
{"title":"单分子的三维定位——综述。","authors":"Sripad Ram, Prashant Prabhat, Jerry Chao, Anish V Abraham, E Sally Ward, Raimund J Ober","doi":"10.1109/ACSSC.2008.5074362","DOIUrl":null,"url":null,"abstract":"<p><p>Single molecule tracking in three dimensions (3D) in a live cell environment holds the promise of revealing important new biological insights. However, conventional microscopy based imaging techniques are not well suited for fast 3D tracking of single molecules in cells. Previously we developed an imaging modality multifocal plane microscopy (MUM) to image fast intracellular dynamics in 3D in live cells. Recently, we have reported an algorithm, the MUM localization algorithm (MUMLA), for the 3D localization of point sources that are imaged using MUM. Here, we present a review of our results on MUM and MUMLA. We have validated MUMLA through simulated and experimental data and have shown that the 3D-position of quantum dots (QDs) can be determined with high spatial accuracy over a wide spatial range. We have calculated the Cramer-Rao lower bound for the problem of determining the 3D location of point sources from MUM and from conventional microscopes. Our analyses shows that MUM overcomes the poor depth discrimination of the conventional microscope, and thereby paves the way for high accuracy tracking of nanoparticles in a live cell environment. We have also shown that the performance of MUMLA comes consistently close to the Cramer-Rao lower bound.</p>","PeriodicalId":72692,"journal":{"name":"Conference record. Asilomar Conference on Signals, Systems & Computers","volume":" ","pages":"64-66"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ACSSC.2008.5074362","citationCount":"0","resultStr":"{\"title\":\"Localizing single molecules in three dimensions - a brief review.\",\"authors\":\"Sripad Ram, Prashant Prabhat, Jerry Chao, Anish V Abraham, E Sally Ward, Raimund J Ober\",\"doi\":\"10.1109/ACSSC.2008.5074362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single molecule tracking in three dimensions (3D) in a live cell environment holds the promise of revealing important new biological insights. However, conventional microscopy based imaging techniques are not well suited for fast 3D tracking of single molecules in cells. Previously we developed an imaging modality multifocal plane microscopy (MUM) to image fast intracellular dynamics in 3D in live cells. Recently, we have reported an algorithm, the MUM localization algorithm (MUMLA), for the 3D localization of point sources that are imaged using MUM. Here, we present a review of our results on MUM and MUMLA. We have validated MUMLA through simulated and experimental data and have shown that the 3D-position of quantum dots (QDs) can be determined with high spatial accuracy over a wide spatial range. We have calculated the Cramer-Rao lower bound for the problem of determining the 3D location of point sources from MUM and from conventional microscopes. Our analyses shows that MUM overcomes the poor depth discrimination of the conventional microscope, and thereby paves the way for high accuracy tracking of nanoparticles in a live cell environment. We have also shown that the performance of MUMLA comes consistently close to the Cramer-Rao lower bound.</p>\",\"PeriodicalId\":72692,\"journal\":{\"name\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"volume\":\" \",\"pages\":\"64-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/ACSSC.2008.5074362\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference record. Asilomar Conference on Signals, Systems & Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2008.5074362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference record. Asilomar Conference on Signals, Systems & Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localizing single molecules in three dimensions - a brief review.
Single molecule tracking in three dimensions (3D) in a live cell environment holds the promise of revealing important new biological insights. However, conventional microscopy based imaging techniques are not well suited for fast 3D tracking of single molecules in cells. Previously we developed an imaging modality multifocal plane microscopy (MUM) to image fast intracellular dynamics in 3D in live cells. Recently, we have reported an algorithm, the MUM localization algorithm (MUMLA), for the 3D localization of point sources that are imaged using MUM. Here, we present a review of our results on MUM and MUMLA. We have validated MUMLA through simulated and experimental data and have shown that the 3D-position of quantum dots (QDs) can be determined with high spatial accuracy over a wide spatial range. We have calculated the Cramer-Rao lower bound for the problem of determining the 3D location of point sources from MUM and from conventional microscopes. Our analyses shows that MUM overcomes the poor depth discrimination of the conventional microscope, and thereby paves the way for high accuracy tracking of nanoparticles in a live cell environment. We have also shown that the performance of MUMLA comes consistently close to the Cramer-Rao lower bound.