启发:增加药物和计算化学家之间的协同作用。

Q2 Medicine In Silico Biology Pub Date : 2011-01-01 DOI:10.3233/CI-2009-0017
Alberto Gobbi, Matthew Lardy, Sun Hee Kim, Frank Ruebsam, Martin Tran, Stephen E Webber, Alan X Xiang
{"title":"启发:增加药物和计算化学家之间的协同作用。","authors":"Alberto Gobbi,&nbsp;Matthew Lardy,&nbsp;Sun Hee Kim,&nbsp;Frank Ruebsam,&nbsp;Martin Tran,&nbsp;Stephen E Webber,&nbsp;Alan X Xiang","doi":"10.3233/CI-2009-0017","DOIUrl":null,"url":null,"abstract":"<p><p>We present Illuminator, a user-friendly web front end to computational models such as docking and 3D shape similarity calculations. Illuminator was specifically created to allow non-experts to design and submit molecules to computational chemistry programs. As such it provides a simple user interface allowing users to submit jobs starting from a 2D structure. The models provided are pre-optimized by computational chemists for each specific target. We provide an example of how Illuminator was used to prioritize the design of molecular substituents in the Anadys HCV Polymerase (NS5B) project. With 7500 submitted jobs in 1.5 years, Illuminator has allowed project teams at Anadys to accelerate the optimization of novel leads. It has also improved communication between project members and increased demand for computational drug discovery tools.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"11 1-2","pages":"83-93"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/CI-2009-0017","citationCount":"1","resultStr":"{\"title\":\"Illuminator: increasing synergies between medicinal and computational chemists.\",\"authors\":\"Alberto Gobbi,&nbsp;Matthew Lardy,&nbsp;Sun Hee Kim,&nbsp;Frank Ruebsam,&nbsp;Martin Tran,&nbsp;Stephen E Webber,&nbsp;Alan X Xiang\",\"doi\":\"10.3233/CI-2009-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present Illuminator, a user-friendly web front end to computational models such as docking and 3D shape similarity calculations. Illuminator was specifically created to allow non-experts to design and submit molecules to computational chemistry programs. As such it provides a simple user interface allowing users to submit jobs starting from a 2D structure. The models provided are pre-optimized by computational chemists for each specific target. We provide an example of how Illuminator was used to prioritize the design of molecular substituents in the Anadys HCV Polymerase (NS5B) project. With 7500 submitted jobs in 1.5 years, Illuminator has allowed project teams at Anadys to accelerate the optimization of novel leads. It has also improved communication between project members and increased demand for computational drug discovery tools.</p>\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":\"11 1-2\",\"pages\":\"83-93\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/CI-2009-0017\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/CI-2009-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/CI-2009-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了Illuminator,一个用户友好的web前端计算模型,如对接和3D形状相似性计算。Illuminator是专门为允许非专家设计和提交分子计算化学程序而创建的。因此,它提供了一个简单的用户界面,允许用户从2D结构开始提交作业。所提供的模型是由计算化学家针对每个特定目标预先优化的。我们提供了一个例子,说明如何在Anadys HCV聚合酶(NS5B)项目中使用Illuminator来优先设计分子取代基。在一年半的时间里,Illuminator提交了7500份工作,使Anadys的项目团队能够加速新线索的优化。它还改善了项目成员之间的沟通,增加了对计算药物发现工具的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Illuminator: increasing synergies between medicinal and computational chemists.

We present Illuminator, a user-friendly web front end to computational models such as docking and 3D shape similarity calculations. Illuminator was specifically created to allow non-experts to design and submit molecules to computational chemistry programs. As such it provides a simple user interface allowing users to submit jobs starting from a 2D structure. The models provided are pre-optimized by computational chemists for each specific target. We provide an example of how Illuminator was used to prioritize the design of molecular substituents in the Anadys HCV Polymerase (NS5B) project. With 7500 submitted jobs in 1.5 years, Illuminator has allowed project teams at Anadys to accelerate the optimization of novel leads. It has also improved communication between project members and increased demand for computational drug discovery tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
期刊最新文献
Modelling speciation: Problems and implications. Where Do CABs Exist? Verification of a specific region containing concave Actin Bundles (CABs) in a 3-Dimensional confocal image. scAN1.0: A reproducible and standardized pipeline for processing 10X single cell RNAseq data. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. Cancer immunoediting: A game theoretical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1