利用部分注释改进RNA-Seq reads的转录组定量和重建。

Q2 Medicine In Silico Biology Pub Date : 2011-01-01 DOI:10.3233/ISB-2012-0459
Serghei Mangul, Adrian Caciula, Olga Glebova, Ion Mandoiu, Alex Zelikovsky
{"title":"利用部分注释改进RNA-Seq reads的转录组定量和重建。","authors":"Serghei Mangul,&nbsp;Adrian Caciula,&nbsp;Olga Glebova,&nbsp;Ion Mandoiu,&nbsp;Alex Zelikovsky","doi":"10.3233/ISB-2012-0459","DOIUrl":null,"url":null,"abstract":"<p><p>The paper addresses the problem of how to use RNA-Seq data for transcriptome reconstruction and quantification, as well as novel transcript discovery in partially annotated genomes. We present a novel annotation-guided general framework for transcriptome discovery, reconstruction and quantification in partially annotated genomes and compare it with existing annotation-guided and genome-guided transcriptome assembly methods. Our method, referred as Discovery and Reconstruction of Unannotated Transcripts (DRUT), can be used to enhance existing transcriptome assemblers, such as Cufflinks, as well as to accurately estimate the transcript frequencies. Empirical analysis on synthetic datasets confirms that Cufflinks enhanced by DRUT has superior quality of reconstruction and frequency estimation of transcripts.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"11 5-6","pages":"251-61"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/ISB-2012-0459","citationCount":"8","resultStr":"{\"title\":\"Improved transcriptome quantification and reconstruction from RNA-Seq reads using partial annotations.\",\"authors\":\"Serghei Mangul,&nbsp;Adrian Caciula,&nbsp;Olga Glebova,&nbsp;Ion Mandoiu,&nbsp;Alex Zelikovsky\",\"doi\":\"10.3233/ISB-2012-0459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The paper addresses the problem of how to use RNA-Seq data for transcriptome reconstruction and quantification, as well as novel transcript discovery in partially annotated genomes. We present a novel annotation-guided general framework for transcriptome discovery, reconstruction and quantification in partially annotated genomes and compare it with existing annotation-guided and genome-guided transcriptome assembly methods. Our method, referred as Discovery and Reconstruction of Unannotated Transcripts (DRUT), can be used to enhance existing transcriptome assemblers, such as Cufflinks, as well as to accurately estimate the transcript frequencies. Empirical analysis on synthetic datasets confirms that Cufflinks enhanced by DRUT has superior quality of reconstruction and frequency estimation of transcripts.</p>\",\"PeriodicalId\":39379,\"journal\":{\"name\":\"In Silico Biology\",\"volume\":\"11 5-6\",\"pages\":\"251-61\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/ISB-2012-0459\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In Silico Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ISB-2012-0459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-2012-0459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8

摘要

本文解决了如何使用RNA-Seq数据进行转录组重建和定量的问题,以及在部分注释的基因组中发现新的转录本。我们提出了一种新的注释引导的转录组发现、重建和定量的通用框架,并将其与现有的注释引导和基因组引导转录组组装方法进行了比较。我们的方法被称为发现和重建未注释转录本(DRUT),可用于增强现有的转录组组装器,如袖扣,以及准确估计转录本频率。对合成数据集的实证分析证实,经DRUT增强的袖扣具有较好的转录本重建和频率估计质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved transcriptome quantification and reconstruction from RNA-Seq reads using partial annotations.

The paper addresses the problem of how to use RNA-Seq data for transcriptome reconstruction and quantification, as well as novel transcript discovery in partially annotated genomes. We present a novel annotation-guided general framework for transcriptome discovery, reconstruction and quantification in partially annotated genomes and compare it with existing annotation-guided and genome-guided transcriptome assembly methods. Our method, referred as Discovery and Reconstruction of Unannotated Transcripts (DRUT), can be used to enhance existing transcriptome assemblers, such as Cufflinks, as well as to accurately estimate the transcript frequencies. Empirical analysis on synthetic datasets confirms that Cufflinks enhanced by DRUT has superior quality of reconstruction and frequency estimation of transcripts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
期刊最新文献
Modelling speciation: Problems and implications. Where Do CABs Exist? Verification of a specific region containing concave Actin Bundles (CABs) in a 3-Dimensional confocal image. scAN1.0: A reproducible and standardized pipeline for processing 10X single cell RNAseq data. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. Cancer immunoediting: A game theoretical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1