{"title":"求解晶体结构的衍射方法的演变。","authors":"Wayne A Hendrickson","doi":"10.1107/S0108767312050453","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of X-ray diffraction in 1912 by Laue and co-workers had important implications for the physics of diffraction, for the nature of X-radiation and for the structure of matter. Lawrence Bragg made important contributions to early developments in each of these areas, but the most pregnant of his innovations was in structure determination from X-ray diffraction data. He continued to make highly significant contributions to structure determination right on to the first crystal structures of proteins. Crystallography has made substantial contributions to chemistry and biology, and notably so for biological macromolecules.</p>","PeriodicalId":7400,"journal":{"name":"Acta Crystallographica Section A","volume":"69 Pt 1","pages":"51-9"},"PeriodicalIF":1.8000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S0108767312050453","citationCount":"21","resultStr":"{\"title\":\"Evolution of diffraction methods for solving crystal structures.\",\"authors\":\"Wayne A Hendrickson\",\"doi\":\"10.1107/S0108767312050453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery of X-ray diffraction in 1912 by Laue and co-workers had important implications for the physics of diffraction, for the nature of X-radiation and for the structure of matter. Lawrence Bragg made important contributions to early developments in each of these areas, but the most pregnant of his innovations was in structure determination from X-ray diffraction data. He continued to make highly significant contributions to structure determination right on to the first crystal structures of proteins. Crystallography has made substantial contributions to chemistry and biology, and notably so for biological macromolecules.</p>\",\"PeriodicalId\":7400,\"journal\":{\"name\":\"Acta Crystallographica Section A\",\"volume\":\"69 Pt 1\",\"pages\":\"51-9\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1107/S0108767312050453\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1107/S0108767312050453\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/12/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S0108767312050453","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/12/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Evolution of diffraction methods for solving crystal structures.
The discovery of X-ray diffraction in 1912 by Laue and co-workers had important implications for the physics of diffraction, for the nature of X-radiation and for the structure of matter. Lawrence Bragg made important contributions to early developments in each of these areas, but the most pregnant of his innovations was in structure determination from X-ray diffraction data. He continued to make highly significant contributions to structure determination right on to the first crystal structures of proteins. Crystallography has made substantial contributions to chemistry and biology, and notably so for biological macromolecules.
期刊介绍:
Acta Crystallographica Section A: Foundations and Advances publishes articles reporting advances in the theory and practice of all areas of crystallography in the broadest sense. As well as traditional crystallography, this includes nanocrystals, metacrystals, amorphous materials, quasicrystals, synchrotron and XFEL studies, coherent scattering, diffraction imaging, time-resolved studies and the structure of strain and defects in materials.
The journal has two parts, a rapid-publication Advances section and the traditional Foundations section. Articles for the Advances section are of particularly high value and impact. They receive expedited treatment and may be highlighted by an accompanying scientific commentary article and a press release. Further details are given in the November 2013 Editorial.
The central themes of the journal are, on the one hand, experimental and theoretical studies of the properties and arrangements of atoms, ions and molecules in condensed matter, periodic, quasiperiodic or amorphous, ideal or real, and, on the other, the theoretical and experimental aspects of the various methods to determine these properties and arrangements.