Ahmed E Enayetallah, Dinesh Puppala, Daniel Ziemek, James E Fischer, Sheila Kantesaria, Mathew T Pletcher
{"title":"使用因果推理评估体内心脏毒性机制到体外模型的可翻译性。","authors":"Ahmed E Enayetallah, Dinesh Puppala, Daniel Ziemek, James E Fischer, Sheila Kantesaria, Mathew T Pletcher","doi":"10.1186/2050-6511-14-46","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced cardiac toxicity has been implicated in 31% of drug withdrawals in the USA. The fact that the risk for cardiac-related adverse events goes undetected in preclinical studies for so many drugs underscores the need for better, more predictive in vitro safety screens to be deployed early in the drug discovery process. Unfortunately, many questions remain about the ability to accurately translate findings from simple cellular systems to the mechanisms that drive toxicity in the complex in vivo environment. In this study, we analyzed translatability of cardiotoxic effects for a diverse set of drugs from rodents to two different cell systems (rat heart tissue-derived cells (H9C2) and primary rat cardiomyocytes (RCM)) based on their transcriptional response. To unravel the altered pathway, we applied a novel computational systems biology approach, the Causal Reasoning Engine (CRE), to infer upstream molecular events causing the observed gene expression changes. By cross-referencing the cardiotoxicity annotations with the pathway analysis, we found evidence of mechanistic convergence towards common molecular mechanisms regardless of the cardiotoxic phenotype. We also experimentally verified two specific molecular hypotheses that translated well from in vivo to in vitro (Kruppel-like factor 4, KLF4 and Transforming growth factor beta 1, TGFB1) supporting the validity of the predictions of the computational pathway analysis. In conclusion, this work demonstrates the use of a novel systems biology approach to predict mechanisms of toxicity such as KLF4 and TGFB1 that translate from in vivo to in vitro. We also show that more complex in vitro models such as primary rat cardiomyocytes may not offer any advantage over simpler models such as immortalized H9C2 cells in terms of translatability to in vivo effects if we consider the right endpoints for the model. Further assessment and validation of the generated molecular hypotheses would greatly enhance our ability to design predictive in vitro cardiotoxicity assays. </p>","PeriodicalId":48846,"journal":{"name":"BMC Pharmacology & Toxicology","volume":"14 ","pages":"46"},"PeriodicalIF":2.9000,"publicationDate":"2013-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2050-6511-14-46","citationCount":"2","resultStr":"{\"title\":\"Assessing the translatability of in vivo cardiotoxicity mechanisms to in vitro models using causal reasoning.\",\"authors\":\"Ahmed E Enayetallah, Dinesh Puppala, Daniel Ziemek, James E Fischer, Sheila Kantesaria, Mathew T Pletcher\",\"doi\":\"10.1186/2050-6511-14-46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug-induced cardiac toxicity has been implicated in 31% of drug withdrawals in the USA. The fact that the risk for cardiac-related adverse events goes undetected in preclinical studies for so many drugs underscores the need for better, more predictive in vitro safety screens to be deployed early in the drug discovery process. Unfortunately, many questions remain about the ability to accurately translate findings from simple cellular systems to the mechanisms that drive toxicity in the complex in vivo environment. In this study, we analyzed translatability of cardiotoxic effects for a diverse set of drugs from rodents to two different cell systems (rat heart tissue-derived cells (H9C2) and primary rat cardiomyocytes (RCM)) based on their transcriptional response. To unravel the altered pathway, we applied a novel computational systems biology approach, the Causal Reasoning Engine (CRE), to infer upstream molecular events causing the observed gene expression changes. By cross-referencing the cardiotoxicity annotations with the pathway analysis, we found evidence of mechanistic convergence towards common molecular mechanisms regardless of the cardiotoxic phenotype. We also experimentally verified two specific molecular hypotheses that translated well from in vivo to in vitro (Kruppel-like factor 4, KLF4 and Transforming growth factor beta 1, TGFB1) supporting the validity of the predictions of the computational pathway analysis. In conclusion, this work demonstrates the use of a novel systems biology approach to predict mechanisms of toxicity such as KLF4 and TGFB1 that translate from in vivo to in vitro. We also show that more complex in vitro models such as primary rat cardiomyocytes may not offer any advantage over simpler models such as immortalized H9C2 cells in terms of translatability to in vivo effects if we consider the right endpoints for the model. Further assessment and validation of the generated molecular hypotheses would greatly enhance our ability to design predictive in vitro cardiotoxicity assays. </p>\",\"PeriodicalId\":48846,\"journal\":{\"name\":\"BMC Pharmacology & Toxicology\",\"volume\":\"14 \",\"pages\":\"46\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2013-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/2050-6511-14-46\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Pharmacology & Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/2050-6511-14-46\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Pharmacology & Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2050-6511-14-46","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Assessing the translatability of in vivo cardiotoxicity mechanisms to in vitro models using causal reasoning.
Drug-induced cardiac toxicity has been implicated in 31% of drug withdrawals in the USA. The fact that the risk for cardiac-related adverse events goes undetected in preclinical studies for so many drugs underscores the need for better, more predictive in vitro safety screens to be deployed early in the drug discovery process. Unfortunately, many questions remain about the ability to accurately translate findings from simple cellular systems to the mechanisms that drive toxicity in the complex in vivo environment. In this study, we analyzed translatability of cardiotoxic effects for a diverse set of drugs from rodents to two different cell systems (rat heart tissue-derived cells (H9C2) and primary rat cardiomyocytes (RCM)) based on their transcriptional response. To unravel the altered pathway, we applied a novel computational systems biology approach, the Causal Reasoning Engine (CRE), to infer upstream molecular events causing the observed gene expression changes. By cross-referencing the cardiotoxicity annotations with the pathway analysis, we found evidence of mechanistic convergence towards common molecular mechanisms regardless of the cardiotoxic phenotype. We also experimentally verified two specific molecular hypotheses that translated well from in vivo to in vitro (Kruppel-like factor 4, KLF4 and Transforming growth factor beta 1, TGFB1) supporting the validity of the predictions of the computational pathway analysis. In conclusion, this work demonstrates the use of a novel systems biology approach to predict mechanisms of toxicity such as KLF4 and TGFB1 that translate from in vivo to in vitro. We also show that more complex in vitro models such as primary rat cardiomyocytes may not offer any advantage over simpler models such as immortalized H9C2 cells in terms of translatability to in vivo effects if we consider the right endpoints for the model. Further assessment and validation of the generated molecular hypotheses would greatly enhance our ability to design predictive in vitro cardiotoxicity assays.
期刊介绍:
BMC Pharmacology and Toxicology is an open access, peer-reviewed journal that considers articles on all aspects of chemically defined therapeutic and toxic agents. The journal welcomes submissions from all fields of experimental and clinical pharmacology including clinical trials and toxicology.