植物防御模型修订通过迭代最小化约束违反。

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2014-01-01 Epub Date: 2014-01-09 DOI:10.1504/IJCBDD.2014.058588
Dragana Miljkovic, Matjaž Depolli, Tjaša Stare, Igor Mozetič, Marko Petek, Kristina Gruden, Nada Lavrač
{"title":"植物防御模型修订通过迭代最小化约束违反。","authors":"Dragana Miljkovic,&nbsp;Matjaž Depolli,&nbsp;Tjaša Stare,&nbsp;Igor Mozetič,&nbsp;Marko Petek,&nbsp;Kristina Gruden,&nbsp;Nada Lavrač","doi":"10.1504/IJCBDD.2014.058588","DOIUrl":null,"url":null,"abstract":"<p><p>Biologists have been investigating plant defence response to virus infections; however, a comprehensive mathematical model of this complex process has not been developed. One obstacle in developing a dynamic model, useful for simulation, is the lack of kinetic data from which the model parameters could be determined. We address this problem by proposing a methodology for iterative improvement of the model parameters until the simulation results come close to the expectation of biology experts. These expectations are formalised in the form of constraints to be satisfied by the model simulations. In three iterative steps the model converged to satisfy the biology experts. There are two results of our approach: individual simulations and optimised model parameters, which provide a deeper insight into the biological system. Our constraint-driven optimisation approach allows for an efficient exploration of the dynamic behaviour of biological models and, at the same time, increases their reliability. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 1","pages":"61-79"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.058588","citationCount":"2","resultStr":"{\"title\":\"Plant defence model revisions through iterative minimisation of constraint violations.\",\"authors\":\"Dragana Miljkovic,&nbsp;Matjaž Depolli,&nbsp;Tjaša Stare,&nbsp;Igor Mozetič,&nbsp;Marko Petek,&nbsp;Kristina Gruden,&nbsp;Nada Lavrač\",\"doi\":\"10.1504/IJCBDD.2014.058588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biologists have been investigating plant defence response to virus infections; however, a comprehensive mathematical model of this complex process has not been developed. One obstacle in developing a dynamic model, useful for simulation, is the lack of kinetic data from which the model parameters could be determined. We address this problem by proposing a methodology for iterative improvement of the model parameters until the simulation results come close to the expectation of biology experts. These expectations are formalised in the form of constraints to be satisfied by the model simulations. In three iterative steps the model converged to satisfy the biology experts. There are two results of our approach: individual simulations and optimised model parameters, which provide a deeper insight into the biological system. Our constraint-driven optimisation approach allows for an efficient exploration of the dynamic behaviour of biological models and, at the same time, increases their reliability. </p>\",\"PeriodicalId\":39227,\"journal\":{\"name\":\"International Journal of Computational Biology and Drug Design\",\"volume\":\"7 1\",\"pages\":\"61-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.058588\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Biology and Drug Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCBDD.2014.058588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2014/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.058588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/1/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 2

摘要

生物学家一直在研究植物对病毒感染的防御反应;然而,这一复杂过程的综合数学模型尚未建立。开发一个对仿真有用的动态模型的一个障碍是缺乏可以用来确定模型参数的动力学数据。我们通过提出一种迭代改进模型参数的方法来解决这个问题,直到模拟结果接近生物学专家的期望。这些期望以约束的形式形式化,由模型模拟来满足。在三个迭代步骤中,模型收敛到满足生物学专家的要求。我们的方法有两个结果:个体模拟和优化的模型参数,这提供了对生物系统的更深入的了解。我们的约束驱动优化方法允许对生物模型的动态行为进行有效的探索,同时增加了它们的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant defence model revisions through iterative minimisation of constraint violations.

Biologists have been investigating plant defence response to virus infections; however, a comprehensive mathematical model of this complex process has not been developed. One obstacle in developing a dynamic model, useful for simulation, is the lack of kinetic data from which the model parameters could be determined. We address this problem by proposing a methodology for iterative improvement of the model parameters until the simulation results come close to the expectation of biology experts. These expectations are formalised in the form of constraints to be satisfied by the model simulations. In three iterative steps the model converged to satisfy the biology experts. There are two results of our approach: individual simulations and optimised model parameters, which provide a deeper insight into the biological system. Our constraint-driven optimisation approach allows for an efficient exploration of the dynamic behaviour of biological models and, at the same time, increases their reliability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1