Michael J Fu, Andrew D Hershberger, Kumiko Sano, M Cenk Cavuşoğlu
{"title":"视觉-触觉协同定位对3D fit任务性能的影响","authors":"Michael J Fu, Andrew D Hershberger, Kumiko Sano, M Cenk Cavuşoğlu","doi":"10.1109/IROS.2011.6094707","DOIUrl":null,"url":null,"abstract":"<p><p>Given the ease that humans have with using a keyboard and mouse in typical, non-colocated computer interaction, many studies have investigated the value of colocating the visual field and haptic workspaces using immersive virtual reality (VR) modalities. Significant understanding has been gained by previous work comparing physical tasks against VR tasks, visuo-haptic co-location versus non-colocation, and even visuo-haptic rotational misalignments in VR. However, few studies have explored all of these paradigms in context with each other and it is difficult to do inter-study comparisons because of the variation in tested motor tasks. Therefore, the goal for the current study was to characterize human performance of Fitts' point-to-point reaching task - an established test of manual performance - in the physical, co-located/non-colocated VR, and rotated VR visualization conditions. A key finding was the significant decrease observed in end-point error for tasks performed in a co-located virtual reality environment. The results also showed cyclic performance degradations due to rotational visuo-haptic misalignments that were consistent with trends reported by the literature.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2011 ","pages":"3460-3467"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2011.6094707","citationCount":"14","resultStr":"{\"title\":\"Effect of Visuo-Haptic Co-location on 3D Fitts' Task Performance.\",\"authors\":\"Michael J Fu, Andrew D Hershberger, Kumiko Sano, M Cenk Cavuşoğlu\",\"doi\":\"10.1109/IROS.2011.6094707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the ease that humans have with using a keyboard and mouse in typical, non-colocated computer interaction, many studies have investigated the value of colocating the visual field and haptic workspaces using immersive virtual reality (VR) modalities. Significant understanding has been gained by previous work comparing physical tasks against VR tasks, visuo-haptic co-location versus non-colocation, and even visuo-haptic rotational misalignments in VR. However, few studies have explored all of these paradigms in context with each other and it is difficult to do inter-study comparisons because of the variation in tested motor tasks. Therefore, the goal for the current study was to characterize human performance of Fitts' point-to-point reaching task - an established test of manual performance - in the physical, co-located/non-colocated VR, and rotated VR visualization conditions. A key finding was the significant decrease observed in end-point error for tasks performed in a co-located virtual reality environment. The results also showed cyclic performance degradations due to rotational visuo-haptic misalignments that were consistent with trends reported by the literature.</p>\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"2011 \",\"pages\":\"3460-3467\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/IROS.2011.6094707\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2011.6094707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2011.6094707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Visuo-Haptic Co-location on 3D Fitts' Task Performance.
Given the ease that humans have with using a keyboard and mouse in typical, non-colocated computer interaction, many studies have investigated the value of colocating the visual field and haptic workspaces using immersive virtual reality (VR) modalities. Significant understanding has been gained by previous work comparing physical tasks against VR tasks, visuo-haptic co-location versus non-colocation, and even visuo-haptic rotational misalignments in VR. However, few studies have explored all of these paradigms in context with each other and it is difficult to do inter-study comparisons because of the variation in tested motor tasks. Therefore, the goal for the current study was to characterize human performance of Fitts' point-to-point reaching task - an established test of manual performance - in the physical, co-located/non-colocated VR, and rotated VR visualization conditions. A key finding was the significant decrease observed in end-point error for tasks performed in a co-located virtual reality environment. The results also showed cyclic performance degradations due to rotational visuo-haptic misalignments that were consistent with trends reported by the literature.