Bowen Song, Daiyun Huang, Yuxin Zhang, Zhen Wei, Jionglong Su, João Pedro de Magalhães, Daniel J Rigden, Jia Meng, Kunqi Chen
{"title":"m6A- tshub:揭示23种人体组织中特定环境的m6A甲基化和m6A影响突变。","authors":"Bowen Song, Daiyun Huang, Yuxin Zhang, Zhen Wei, Jionglong Su, João Pedro de Magalhães, Daniel J Rigden, Jia Meng, Kunqi Chen","doi":"10.1016/j.gpb.2022.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>As the most pervasive epigenetic marker present on mRNAs and long non-coding RNAs (lncRNAs), N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) RNA methylation has been shown to participate in essential biological processes. Recent studies have revealed the distinct patterns of m<sup>6</sup>A methylome across human tissues, and a major challenge remains in elucidating the tissue-specific presence and circuitry of m<sup>6</sup>A methylation. We present here a comprehensive online platform, m6A-TSHub, for unveiling the context-specific m<sup>6</sup>A methylation and genetic mutations that potentially regulate m<sup>6</sup>A epigenetic mark. m6A-TSHub consists of four core components, including (1) m6A-TSDB, a comprehensive database of 184,554 functionally annotated m<sup>6</sup>A sites derived from 23 human tissues and 499,369 m<sup>6</sup>A sites from 25 tumor conditions, respectively; (2) m6A-TSFinder, a web server for high-accuracy prediction of m<sup>6</sup>A methylation sites within a specific tissue from RNA sequences, which was constructed using multi-instance deep neural networks with gated attention; (3) m6A-TSVar, a web server for assessing the impact of genetic variants on tissue-specific m<sup>6</sup>A RNA modifications; and (4) m6A-CAVar, a database of 587,983 The Cancer Genome Atlas (TCGA) cancer mutations (derived from 27 cancer types) that were predicted to affect m<sup>6</sup>A modifications in the primary tissue of cancers. The database should make a useful resource for studying the m<sup>6</sup>A methylome and the genetic factors of epitranscriptome disturbance in a specific tissue (or cancer type). m6A-TSHub is accessible at www.xjtlu.edu.cn/biologicalsciences/m6ats.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787194/pdf/","citationCount":"0","resultStr":"{\"title\":\"m6A-TSHub: Unveiling the Context-specific m<sup>6</sup>A Methylation and m<sup>6</sup>A-affecting Mutations in 23 Human Tissues.\",\"authors\":\"Bowen Song, Daiyun Huang, Yuxin Zhang, Zhen Wei, Jionglong Su, João Pedro de Magalhães, Daniel J Rigden, Jia Meng, Kunqi Chen\",\"doi\":\"10.1016/j.gpb.2022.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the most pervasive epigenetic marker present on mRNAs and long non-coding RNAs (lncRNAs), N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) RNA methylation has been shown to participate in essential biological processes. Recent studies have revealed the distinct patterns of m<sup>6</sup>A methylome across human tissues, and a major challenge remains in elucidating the tissue-specific presence and circuitry of m<sup>6</sup>A methylation. We present here a comprehensive online platform, m6A-TSHub, for unveiling the context-specific m<sup>6</sup>A methylation and genetic mutations that potentially regulate m<sup>6</sup>A epigenetic mark. m6A-TSHub consists of four core components, including (1) m6A-TSDB, a comprehensive database of 184,554 functionally annotated m<sup>6</sup>A sites derived from 23 human tissues and 499,369 m<sup>6</sup>A sites from 25 tumor conditions, respectively; (2) m6A-TSFinder, a web server for high-accuracy prediction of m<sup>6</sup>A methylation sites within a specific tissue from RNA sequences, which was constructed using multi-instance deep neural networks with gated attention; (3) m6A-TSVar, a web server for assessing the impact of genetic variants on tissue-specific m<sup>6</sup>A RNA modifications; and (4) m6A-CAVar, a database of 587,983 The Cancer Genome Atlas (TCGA) cancer mutations (derived from 27 cancer types) that were predicted to affect m<sup>6</sup>A modifications in the primary tissue of cancers. The database should make a useful resource for studying the m<sup>6</sup>A methylome and the genetic factors of epitranscriptome disturbance in a specific tissue (or cancer type). m6A-TSHub is accessible at www.xjtlu.edu.cn/biologicalsciences/m6ats.</p>\",\"PeriodicalId\":12528,\"journal\":{\"name\":\"Genomics, Proteomics & Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787194/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genomics, Proteomics & Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gpb.2022.09.001\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2022.09.001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
m6A-TSHub: Unveiling the Context-specific m6A Methylation and m6A-affecting Mutations in 23 Human Tissues.
As the most pervasive epigenetic marker present on mRNAs and long non-coding RNAs (lncRNAs), N6-methyladenosine (m6A) RNA methylation has been shown to participate in essential biological processes. Recent studies have revealed the distinct patterns of m6A methylome across human tissues, and a major challenge remains in elucidating the tissue-specific presence and circuitry of m6A methylation. We present here a comprehensive online platform, m6A-TSHub, for unveiling the context-specific m6A methylation and genetic mutations that potentially regulate m6A epigenetic mark. m6A-TSHub consists of four core components, including (1) m6A-TSDB, a comprehensive database of 184,554 functionally annotated m6A sites derived from 23 human tissues and 499,369 m6A sites from 25 tumor conditions, respectively; (2) m6A-TSFinder, a web server for high-accuracy prediction of m6A methylation sites within a specific tissue from RNA sequences, which was constructed using multi-instance deep neural networks with gated attention; (3) m6A-TSVar, a web server for assessing the impact of genetic variants on tissue-specific m6A RNA modifications; and (4) m6A-CAVar, a database of 587,983 The Cancer Genome Atlas (TCGA) cancer mutations (derived from 27 cancer types) that were predicted to affect m6A modifications in the primary tissue of cancers. The database should make a useful resource for studying the m6A methylome and the genetic factors of epitranscriptome disturbance in a specific tissue (or cancer type). m6A-TSHub is accessible at www.xjtlu.edu.cn/biologicalsciences/m6ats.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.