诱导热休克蛋白70水平在肌萎缩症骨骼肌再生中的调节作用。

Gwenny Cosemans, Caroline Merckx, Jan L De Bleecker, Boel De Paepe
{"title":"诱导热休克蛋白70水平在肌萎缩症骨骼肌再生中的调节作用。","authors":"Gwenny Cosemans,&nbsp;Caroline Merckx,&nbsp;Jan L De Bleecker,&nbsp;Boel De Paepe","doi":"10.31083/j.fbs1403019","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Stress-inducible heat shock protein 70 (HSP70) is both a protective chaperone involved in protein homeostasis and an immune regulator. In both capacities, HSP70 has been implicated in muscle disorders, yet with fragmented and differing results. In this study we aimed to compare results obtained in the mouse model for the severest form of muscular dystrophy (MD) equivalent to Duchenne MD, termed the mdx mouse, with results obtained in human MD.</p><p><strong>Methods: </strong>Skeletal muscle and serum samples were obtained from 11 healthy controls, 11 fully characterized patients diagnosed with Becker MD and limb girdle MD (LGMD), and six muscle disease controls. In addition, muscle extracts were prepared from tibialis anterior of mdx and control mice at ages 4, 8 and 12 weeks. The HSP70 levels were quantified using RT-PCR, western blotting and protein arrays, and localized in muscle tissue sections using double immunofluorescence.</p><p><strong>Results: </strong>We found selective and significant 2.2-fold upregulation of HSP70 protein in mdx tibialis muscle at the earliest disease phase only. In LGMD and Becker MD patients, HSP70 protein levels were not significantly different from those of healthy muscle and serum. HSP70 was localized to regenerating muscle fibers both in mouse and human MD skeletal muscle tissues. Toll-like receptor (TLR) 2 and TLR4 expression was moderately increased on the sarcolemma in MD muscle, yet protein levels were not significantly different from normal controls.</p><p><strong>Conclusions: </strong>HSP70 upregulation in MD appears disease stage-dependent, marking the phase of most active muscle regeneration in the mdx mouse. We postulate that well-timed supportive therapeutic interventions with HSP70 agonists could potentially improve muscle tissue's regenerative capacities in MD, attenuating loss of muscle mass while we await gene therapies to become more widely available.</p>","PeriodicalId":73070,"journal":{"name":"Frontiers in bioscience (Scholar edition)","volume":"14 3","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inducible Heat Shock Protein 70 Levels in Patients and the mdx Mouse Affirm Regulation during Skeletal Muscle Regeneration in Muscular Dystrophy.\",\"authors\":\"Gwenny Cosemans,&nbsp;Caroline Merckx,&nbsp;Jan L De Bleecker,&nbsp;Boel De Paepe\",\"doi\":\"10.31083/j.fbs1403019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Stress-inducible heat shock protein 70 (HSP70) is both a protective chaperone involved in protein homeostasis and an immune regulator. In both capacities, HSP70 has been implicated in muscle disorders, yet with fragmented and differing results. In this study we aimed to compare results obtained in the mouse model for the severest form of muscular dystrophy (MD) equivalent to Duchenne MD, termed the mdx mouse, with results obtained in human MD.</p><p><strong>Methods: </strong>Skeletal muscle and serum samples were obtained from 11 healthy controls, 11 fully characterized patients diagnosed with Becker MD and limb girdle MD (LGMD), and six muscle disease controls. In addition, muscle extracts were prepared from tibialis anterior of mdx and control mice at ages 4, 8 and 12 weeks. The HSP70 levels were quantified using RT-PCR, western blotting and protein arrays, and localized in muscle tissue sections using double immunofluorescence.</p><p><strong>Results: </strong>We found selective and significant 2.2-fold upregulation of HSP70 protein in mdx tibialis muscle at the earliest disease phase only. In LGMD and Becker MD patients, HSP70 protein levels were not significantly different from those of healthy muscle and serum. HSP70 was localized to regenerating muscle fibers both in mouse and human MD skeletal muscle tissues. Toll-like receptor (TLR) 2 and TLR4 expression was moderately increased on the sarcolemma in MD muscle, yet protein levels were not significantly different from normal controls.</p><p><strong>Conclusions: </strong>HSP70 upregulation in MD appears disease stage-dependent, marking the phase of most active muscle regeneration in the mdx mouse. We postulate that well-timed supportive therapeutic interventions with HSP70 agonists could potentially improve muscle tissue's regenerative capacities in MD, attenuating loss of muscle mass while we await gene therapies to become more widely available.</p>\",\"PeriodicalId\":73070,\"journal\":{\"name\":\"Frontiers in bioscience (Scholar edition)\",\"volume\":\"14 3\",\"pages\":\"19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Scholar edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31083/j.fbs1403019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Scholar edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31083/j.fbs1403019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

背景:应激诱导热休克蛋白70 (Stress-inducible heat shock protein 70, HSP70)既是参与蛋白稳态的保护性伴侣,也是一种免疫调节因子。在这两种情况下,HSP70都与肌肉疾病有关,但结果零散且不同。在这项研究中,我们的目的是比较最严重形式的肌肉萎缩症(MD)相当于Duchenne MD的小鼠模型,称为mdx小鼠,与人类MD的结果。方法:从11名健康对照者,11名诊断为Becker MD和肢体带状MD (LGMD)的完全特征患者和6名肌肉疾病对照者中获得骨骼肌和血清样本。此外,在4、8和12周龄时,分别从mdx和对照组小鼠的胫骨前肌提取肌肉提取物。采用RT-PCR、western blotting和蛋白阵列法对HSP70水平进行定量,并采用双免疫荧光法对肌肉组织切片进行定位。结果:仅在疾病早期,我们发现mdx胫骨肌中HSP70蛋白选择性且显著上调2.2倍。在LGMD和Becker MD患者中,HSP70蛋白水平与健康肌肉和血清无显著差异。HSP70在小鼠和人骨骼肌组织中均定位于再生肌纤维。toll样受体(TLR) 2和TLR4在肌膜上的表达适度升高,但蛋白水平与正常对照无显著差异。结论:HSP70在MD中的上调表现为疾病分期依赖性,标志着mdx小鼠肌肉再生最活跃的阶段。我们假设,在等待基因疗法变得更广泛的同时,适时使用HSP70激动剂的支持性治疗干预可能会潜在地改善MD中肌肉组织的再生能力,减轻肌肉质量的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inducible Heat Shock Protein 70 Levels in Patients and the mdx Mouse Affirm Regulation during Skeletal Muscle Regeneration in Muscular Dystrophy.

Background: Stress-inducible heat shock protein 70 (HSP70) is both a protective chaperone involved in protein homeostasis and an immune regulator. In both capacities, HSP70 has been implicated in muscle disorders, yet with fragmented and differing results. In this study we aimed to compare results obtained in the mouse model for the severest form of muscular dystrophy (MD) equivalent to Duchenne MD, termed the mdx mouse, with results obtained in human MD.

Methods: Skeletal muscle and serum samples were obtained from 11 healthy controls, 11 fully characterized patients diagnosed with Becker MD and limb girdle MD (LGMD), and six muscle disease controls. In addition, muscle extracts were prepared from tibialis anterior of mdx and control mice at ages 4, 8 and 12 weeks. The HSP70 levels were quantified using RT-PCR, western blotting and protein arrays, and localized in muscle tissue sections using double immunofluorescence.

Results: We found selective and significant 2.2-fold upregulation of HSP70 protein in mdx tibialis muscle at the earliest disease phase only. In LGMD and Becker MD patients, HSP70 protein levels were not significantly different from those of healthy muscle and serum. HSP70 was localized to regenerating muscle fibers both in mouse and human MD skeletal muscle tissues. Toll-like receptor (TLR) 2 and TLR4 expression was moderately increased on the sarcolemma in MD muscle, yet protein levels were not significantly different from normal controls.

Conclusions: HSP70 upregulation in MD appears disease stage-dependent, marking the phase of most active muscle regeneration in the mdx mouse. We postulate that well-timed supportive therapeutic interventions with HSP70 agonists could potentially improve muscle tissue's regenerative capacities in MD, attenuating loss of muscle mass while we await gene therapies to become more widely available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Reference Gene Stability for Investigations of Intracellular Signalling in Human Cancer and Non-Malignant Mesenchymal Stromal Cells. GWAS-Significant Loci and Uterine Fibroids Risk: Analysis of Associations, Gene-Gene and Gene-Environmental Interactions. Interferon Gamma Gene Polymorphisms in Greek Primary Breast Cancer Patients. Conservation Genetics and Breeding using Molecular Genetic Markers in Japanese Quail (Coturnix japonica). Gone with the Species: From Gene Loss to Gene Extinction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1