{"title":"陆生等足动物多足肺的发育","authors":"Naoto Inui, Ryosuke Kimbara, Haruka Yamaguchi, Toru Miura","doi":"10.1016/j.asd.2022.101210","DOIUrl":null,"url":null,"abstract":"<div><p><span>During evolution, various lineages of arthropods colonized land and independently acquired air-breathing organs. Some taxa of oniscidean isopods (Crustacea, Isopoda, Oniscidea) are the most successful crustacean lineages on land and possess organs called “lungs” or “pseudotrachea” for air-breathing in their abdominal appendages, i.e., in pleopods. Although these lungs are important for adapting to the terrestrial environment, their developmental process has not yet been elucidated. In the present study, we investigated the process of lung development in </span><span><em>Porcellio scaber</em></span><span>, the common rough woodlouse with pleopodal lungs in the first two pairs of pleopods. The lungs in the second pleopods developed at the manca<span> 1 stage (immediately after hatching) and became functional at the manca 2 stage. In the first pleopods, which appear at the manca 3 stage, the lungs were gradually developed during the manca 3 stage and became functional in post-manca juveniles. In the second pleopods, epithelial invaginations led to lung development. These results suggest that some novel developmental mechanisms with epithelial invaginations and cuticle formation were acquired during terrestrialization, resulting in the development of functional lungs in the terrestrial isopod lineages.</span></span></p></div>","PeriodicalId":55461,"journal":{"name":"Arthropod Structure & Development","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pleopodal lung development in a terrestrial isopod, Porcellio scaber (Oniscidea)\",\"authors\":\"Naoto Inui, Ryosuke Kimbara, Haruka Yamaguchi, Toru Miura\",\"doi\":\"10.1016/j.asd.2022.101210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>During evolution, various lineages of arthropods colonized land and independently acquired air-breathing organs. Some taxa of oniscidean isopods (Crustacea, Isopoda, Oniscidea) are the most successful crustacean lineages on land and possess organs called “lungs” or “pseudotrachea” for air-breathing in their abdominal appendages, i.e., in pleopods. Although these lungs are important for adapting to the terrestrial environment, their developmental process has not yet been elucidated. In the present study, we investigated the process of lung development in </span><span><em>Porcellio scaber</em></span><span>, the common rough woodlouse with pleopodal lungs in the first two pairs of pleopods. The lungs in the second pleopods developed at the manca<span> 1 stage (immediately after hatching) and became functional at the manca 2 stage. In the first pleopods, which appear at the manca 3 stage, the lungs were gradually developed during the manca 3 stage and became functional in post-manca juveniles. In the second pleopods, epithelial invaginations led to lung development. These results suggest that some novel developmental mechanisms with epithelial invaginations and cuticle formation were acquired during terrestrialization, resulting in the development of functional lungs in the terrestrial isopod lineages.</span></span></p></div>\",\"PeriodicalId\":55461,\"journal\":{\"name\":\"Arthropod Structure & Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arthropod Structure & Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1467803922000718\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arthropod Structure & Development","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1467803922000718","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Pleopodal lung development in a terrestrial isopod, Porcellio scaber (Oniscidea)
During evolution, various lineages of arthropods colonized land and independently acquired air-breathing organs. Some taxa of oniscidean isopods (Crustacea, Isopoda, Oniscidea) are the most successful crustacean lineages on land and possess organs called “lungs” or “pseudotrachea” for air-breathing in their abdominal appendages, i.e., in pleopods. Although these lungs are important for adapting to the terrestrial environment, their developmental process has not yet been elucidated. In the present study, we investigated the process of lung development in Porcellio scaber, the common rough woodlouse with pleopodal lungs in the first two pairs of pleopods. The lungs in the second pleopods developed at the manca 1 stage (immediately after hatching) and became functional at the manca 2 stage. In the first pleopods, which appear at the manca 3 stage, the lungs were gradually developed during the manca 3 stage and became functional in post-manca juveniles. In the second pleopods, epithelial invaginations led to lung development. These results suggest that some novel developmental mechanisms with epithelial invaginations and cuticle formation were acquired during terrestrialization, resulting in the development of functional lungs in the terrestrial isopod lineages.
期刊介绍:
Arthropod Structure & Development is a Journal of Arthropod Structural Biology, Development, and Functional Morphology; it considers manuscripts that deal with micro- and neuroanatomy, development, biomechanics, organogenesis in particular under comparative and evolutionary aspects but not merely taxonomic papers. The aim of the journal is to publish papers in the areas of functional and comparative anatomy and development, with an emphasis on the role of cellular organization in organ function. The journal will also publish papers on organogenisis, embryonic and postembryonic development, and organ or tissue regeneration and repair. Manuscripts dealing with comparative and evolutionary aspects of microanatomy and development are encouraged.