Ann-Lauriene Haag, Yoshihiko Nagai, R Bruce Lennox, Peter Grütter
{"title":"用于生物传感应用的金涂层悬臂表面的表征。","authors":"Ann-Lauriene Haag, Yoshihiko Nagai, R Bruce Lennox, Peter Grütter","doi":"10.1140/epjti/s40485-014-0011-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cantilever based sensors are a promising tool for a very diverse spectrum of biological sensors. They have been used for the detection of proteins, DNA, antigens, bacteria viruses and many other biologically relevant targets. Although cantilever sensing has been described for over 20 years, there are still no viable commercial cantilever-based sensing products on the market. Several reasons can be found for this - a lack of detailed understanding of the origin of signals being an important one. As a consequence application-relevant issues such as shelf life and robust protocols distinguishing targets from false responses have received very little attention. Here, we will discuss a cantilever sensing platform combined with an electrochemical system. The detected surface stress signal is modulated by applying a square wave potential to a gold coated cantilever. The square wave potential induces adsorption and desorption onto the gold electrode surface as well as possible structural changes of the target and probe molecules on the cantilever surface resulting in a measurable surface stress change. What sets this approach apart from regular cantilever sensing is that the quantification and identification of observed signals due to target-probe interactions are not only a function of stress value (i.e. amplitude), but also of the temporal evolution of the stress response as a function of the rate and magnitude of the applied potential change, and the limits of the potential change. This paper will discuss three issues that play an important role in future successful applications of cantilever-based sensing. First, we will discuss what is required to achieve a large surface stress signal to improve sensitivity. Second, a mechanism to achieve an optimal probe density is described that improves the signal-to-noise ratio and response times of the sensor. Lastly, lifetime and long term measurements are discussed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1140/epjti/s40485-014-0011-5","citationCount":"28","resultStr":"{\"title\":\"Characterization of a gold coated cantilever surface for biosensing applications.\",\"authors\":\"Ann-Lauriene Haag, Yoshihiko Nagai, R Bruce Lennox, Peter Grütter\",\"doi\":\"10.1140/epjti/s40485-014-0011-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cantilever based sensors are a promising tool for a very diverse spectrum of biological sensors. They have been used for the detection of proteins, DNA, antigens, bacteria viruses and many other biologically relevant targets. Although cantilever sensing has been described for over 20 years, there are still no viable commercial cantilever-based sensing products on the market. Several reasons can be found for this - a lack of detailed understanding of the origin of signals being an important one. As a consequence application-relevant issues such as shelf life and robust protocols distinguishing targets from false responses have received very little attention. Here, we will discuss a cantilever sensing platform combined with an electrochemical system. The detected surface stress signal is modulated by applying a square wave potential to a gold coated cantilever. The square wave potential induces adsorption and desorption onto the gold electrode surface as well as possible structural changes of the target and probe molecules on the cantilever surface resulting in a measurable surface stress change. What sets this approach apart from regular cantilever sensing is that the quantification and identification of observed signals due to target-probe interactions are not only a function of stress value (i.e. amplitude), but also of the temporal evolution of the stress response as a function of the rate and magnitude of the applied potential change, and the limits of the potential change. This paper will discuss three issues that play an important role in future successful applications of cantilever-based sensing. First, we will discuss what is required to achieve a large surface stress signal to improve sensitivity. Second, a mechanism to achieve an optimal probe density is described that improves the signal-to-noise ratio and response times of the sensor. Lastly, lifetime and long term measurements are discussed.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1140/epjti/s40485-014-0011-5\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1140/epjti/s40485-014-0011-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2015/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1140/epjti/s40485-014-0011-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization of a gold coated cantilever surface for biosensing applications.
Cantilever based sensors are a promising tool for a very diverse spectrum of biological sensors. They have been used for the detection of proteins, DNA, antigens, bacteria viruses and many other biologically relevant targets. Although cantilever sensing has been described for over 20 years, there are still no viable commercial cantilever-based sensing products on the market. Several reasons can be found for this - a lack of detailed understanding of the origin of signals being an important one. As a consequence application-relevant issues such as shelf life and robust protocols distinguishing targets from false responses have received very little attention. Here, we will discuss a cantilever sensing platform combined with an electrochemical system. The detected surface stress signal is modulated by applying a square wave potential to a gold coated cantilever. The square wave potential induces adsorption and desorption onto the gold electrode surface as well as possible structural changes of the target and probe molecules on the cantilever surface resulting in a measurable surface stress change. What sets this approach apart from regular cantilever sensing is that the quantification and identification of observed signals due to target-probe interactions are not only a function of stress value (i.e. amplitude), but also of the temporal evolution of the stress response as a function of the rate and magnitude of the applied potential change, and the limits of the potential change. This paper will discuss three issues that play an important role in future successful applications of cantilever-based sensing. First, we will discuss what is required to achieve a large surface stress signal to improve sensitivity. Second, a mechanism to achieve an optimal probe density is described that improves the signal-to-noise ratio and response times of the sensor. Lastly, lifetime and long term measurements are discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.