Felix T Kurz, Jackelyn M Kembro, Ana G Flesia, Antonis A Armoundas, Sonia Cortassa, Miguel A Aon, David Lloyd
{"title":"网络动力学:代谢、细胞器和细胞中复杂行为的定量分析,从实验到模型再返回。","authors":"Felix T Kurz, Jackelyn M Kembro, Ana G Flesia, Antonis A Armoundas, Sonia Cortassa, Miguel A Aon, David Lloyd","doi":"10.1002/wsbm.1352","DOIUrl":null,"url":null,"abstract":"<p><p>Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O<sub>2</sub> and CO<sub>2</sub> levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1352","citationCount":"32","resultStr":"{\"title\":\"Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back.\",\"authors\":\"Felix T Kurz, Jackelyn M Kembro, Ana G Flesia, Antonis A Armoundas, Sonia Cortassa, Miguel A Aon, David Lloyd\",\"doi\":\"10.1002/wsbm.1352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O<sub>2</sub> and CO<sub>2</sub> levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.</p>\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wsbm.1352\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/9/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back.
Advancing from two core traits of biological systems: multilevel network organization and nonlinearity, we review a host of novel and readily available techniques to explore and analyze their complex dynamic behavior within the framework of experimental-computational synergy. In the context of concrete biological examples, analytical methods such as wavelet, power spectra, and metabolomics-fluxomics analyses, are presented, discussed, and their strengths and limitations highlighted. Further shown is how time series from stationary and nonstationary biological variables and signals, such as membrane potential, high-throughput metabolomics, O2 and CO2 levels, bird locomotion, at the molecular, (sub)cellular, tissue, and whole organ and animal levels, can reveal important information on the properties of the underlying biological networks. Systems biology-inspired computational methods start to pave the way for addressing the integrated functional dynamics of metabolic, organelle and organ networks. As our capacity to unravel the control and regulatory properties of these networks and their dynamics under normal or pathological conditions broadens, so is our ability to address endogenous rhythms and clocks to improve health-span in human aging, and to manage complex metabolic disorders, neurodegeneration, and cancer. WIREs Syst Biol Med 2017, 9:e1352. doi: 10.1002/wsbm.1352 For further resources related to this article, please visit the WIREs website.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine