进口墙板房屋腐蚀损害检查中期报告:2009年9月28日收到的样品检查。

IF 1.5 4区 工程技术 Journal of Research of the National Institute of Standards and Technology Pub Date : 2010-06-01 Print Date: 2010-05-01 DOI:10.6028/jres.115.012
D J Pitchure, R E Ricker, M E Williams, S A Claggett
{"title":"进口墙板房屋腐蚀损害检查中期报告:2009年9月28日收到的样品检查。","authors":"D J Pitchure,&nbsp;R E Ricker,&nbsp;M E Williams,&nbsp;S A Claggett","doi":"10.6028/jres.115.012","DOIUrl":null,"url":null,"abstract":"<p><p>Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1.2 mm ± 0.2 mm was between 5 μm and 10 μm. These results indicate that a chemical compound that contains reduced sulfur, such as hydrogen sulfide (H2S), is present in the environment to which these samples were exposed. The literature indicates that these species strongly influence corrosion rates of most metals and alloys even at low concentrations. None of the samples examined were failed components, and no evidence of imminent failure was found on any of the samples examined. All of the corrosion damage observed to date is consistent with a general attack form of corrosion that will progress in a uniform and relatively predictable manner. No evidence of localized attack was found, but these forms of attack typically require an incubation period before they initiate. Therefore, the number of samples examined to date is too small to draw a conclusion on the relative probability of these forms of corrosion being able to cause or not cause failure. Samples from failed systems or from laboratory tests conducted over a wide range of metallurgical and environmental conditions will be required to assess the probability of these other forms of corrosion causing failure.</p>","PeriodicalId":17039,"journal":{"name":"Journal of Research of the National Institute of Standards and Technology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548533/pdf/","citationCount":"1","resultStr":"{\"title\":\"Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009.\",\"authors\":\"D J Pitchure,&nbsp;R E Ricker,&nbsp;M E Williams,&nbsp;S A Claggett\",\"doi\":\"10.6028/jres.115.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1.2 mm ± 0.2 mm was between 5 μm and 10 μm. These results indicate that a chemical compound that contains reduced sulfur, such as hydrogen sulfide (H2S), is present in the environment to which these samples were exposed. The literature indicates that these species strongly influence corrosion rates of most metals and alloys even at low concentrations. None of the samples examined were failed components, and no evidence of imminent failure was found on any of the samples examined. All of the corrosion damage observed to date is consistent with a general attack form of corrosion that will progress in a uniform and relatively predictable manner. No evidence of localized attack was found, but these forms of attack typically require an incubation period before they initiate. Therefore, the number of samples examined to date is too small to draw a conclusion on the relative probability of these forms of corrosion being able to cause or not cause failure. Samples from failed systems or from laboratory tests conducted over a wide range of metallurgical and environmental conditions will be required to assess the probability of these other forms of corrosion causing failure.</p>\",\"PeriodicalId\":17039,\"journal\":{\"name\":\"Journal of Research of the National Institute of Standards and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2010-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548533/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Institute of Standards and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.6028/jres.115.012\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2010/5/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Institute of Standards and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.6028/jres.115.012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2010/5/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于许多家用系统是由金属材料制成的,因此家庭环境的变化会加速腐蚀速率,从而增加这些系统故障的频率。最近,有报道称,用进口墙板建造的住宅的电器、空调热交换器盘管的故障率增加,电线和其他金属部件也出现了明显的腐蚀。应消费者产品安全委员会(CPSC)的要求,美国国家标准与技术研究院(NIST)通过机构间协议CPSC-1-09-0023参与了对从使用进口墙板建造的房屋中取出的样品和腐蚀产物进行冶金分析。本文件报告了NIST从CPSC收到的第一组样品的分析。NIST于2009年9月28日收到的样品包括供应天然气的铜管和两个空调热交换器盘管。由NIST进行的检查包括摄影,冶金横截面,光学显微镜,扫描电子显微镜(SEM)和x射线衍射(XRD)。对空调热交换器盘管进行了泄漏试验。这些检查的目的是确定腐蚀侵蚀的程度和性质,腐蚀产物的化学成分,以及导致加速腐蚀的潜在化学反应或环境物种。在铜管样品上发现了一种薄薄的黑色腐蚀产物。该层的XRD分析表明,该腐蚀产物为硫化铜相,其衍射峰与矿物辉长岩(Cu9S5)的衍射峰一致。在空调盘管中的其他类型的金属上也观察到腐蚀产物,这些金属经常被冷凝弄湿。当管道壁厚为1.2 mm±0.2 mm时,腐蚀产物层厚度在5 μm ~ 10 μm之间。这些结果表明,在这些样品暴露的环境中存在一种含有还原硫的化合物,如硫化氢(H2S)。文献表明,即使在低浓度下,这些物种也会强烈影响大多数金属和合金的腐蚀速率。检查的样品中没有一个是不合格的部件,也没有在检查的任何样品中发现即将失效的证据。迄今为止观察到的所有腐蚀损伤都与腐蚀的一般攻击形式一致,腐蚀将以统一且相对可预测的方式进行。没有发现局部攻击的证据,但这些形式的攻击通常需要一段潜伏期才能开始。因此,迄今为止检验的样品数量太少,无法得出这些形式的腐蚀能够导致或不会导致失效的相对概率的结论。将需要从失效系统或在各种冶金和环境条件下进行的实验室测试中获得样品,以评估这些其他形式的腐蚀导致失效的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interim Report on the Examination of Corrosion Damage in Homes Constructed With Imported Wallboard: Examination of Samples Received September 28, 2009.

Since many household systems are fabricated out of metallic materials, changes to the household environment that accelerate corrosion rates will increase the frequency of failures in these systems. Recently, it has been reported that homes constructed with imported wallboard have increased failure rates in appliances, air conditioner heat exchanger coils, and visible corrosion on electrical wiring and other metal components. At the request of the Consumer Product Safety Commission (CPSC), the National Institute of Standards and Technology (NIST) became involved through the Interagency Agreement CPSC-1-09-0023 to perform metallurgical analyses on samples and corrosion products removed from homes constructed using imported wallboard. This document reports on the analysis of the first group of samples received by NIST from CPSC. The samples received by NIST on September 28, 2009 consisted of copper tubing for supplying natural gas and two air conditioner heat exchanger coils. The examinations performed by NIST consisted of photography, metallurgical cross-sectioning, optical microscopy, scanning electron microscopy (SEM), and x-ray diffraction (XRD). Leak tests were also performed on the air conditioner heat exchanger coils. The objective of these examinations was to determine extent and nature of the corrosive attack, the chemical composition of the corrosion product, and the potential chemical reactions or environmental species responsible for accelerated corrosion. A thin black corrosion product was found on samples of the copper tubing. The XRD analysis of this layer indicated that this corrosion product was a copper sulfide phase and the diffraction peaks corresponded with those for the mineral digenite (Cu9S5). Corrosion products were also observed on other types of metals in the air conditioner coils where condensation would frequently wet the metals. The thickness of the corrosion product layer on a copper natural gas supply pipe with a wall thickness of 1.2 mm ± 0.2 mm was between 5 μm and 10 μm. These results indicate that a chemical compound that contains reduced sulfur, such as hydrogen sulfide (H2S), is present in the environment to which these samples were exposed. The literature indicates that these species strongly influence corrosion rates of most metals and alloys even at low concentrations. None of the samples examined were failed components, and no evidence of imminent failure was found on any of the samples examined. All of the corrosion damage observed to date is consistent with a general attack form of corrosion that will progress in a uniform and relatively predictable manner. No evidence of localized attack was found, but these forms of attack typically require an incubation period before they initiate. Therefore, the number of samples examined to date is too small to draw a conclusion on the relative probability of these forms of corrosion being able to cause or not cause failure. Samples from failed systems or from laboratory tests conducted over a wide range of metallurgical and environmental conditions will be required to assess the probability of these other forms of corrosion causing failure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
10
期刊介绍: The Journal of Research of the National Institute of Standards and Technology is the flagship publication of the National Institute of Standards and Technology. It has been published under various titles and forms since 1904, with its roots as Scientific Papers issued as the Bulletin of the Bureau of Standards. In 1928, the Scientific Papers were combined with Technologic Papers, which reported results of investigations of material and methods of testing. This new publication was titled the Bureau of Standards Journal of Research. The Journal of Research of NIST reports NIST research and development in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, information technology.
期刊最新文献
Design Considerations for a Surface Disinfection Device Using Ultraviolet-C Light-Emitting Diodes. AbsorbanceQ: An App for Generating Absorbance Images from Brightfield Images. Broadband Dielectric Spectroscopy as a Potential Label-Free Method to Rapidly Verify Ultraviolet-C Radiation Disinfection. Perspectives and Recommendations Regarding Standards for Ultraviolet-C Whole-Room Disinfection in Healthcare. Evaluations of a Detector-Limited Digital Impedance Bridge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1