具有条件可转移组件的领域自适应。

Mingming Gong, Kun Zhang, Tongliang Liu, Dacheng Tao, Clark Glymour, Bernhard Schölkopf
{"title":"具有条件可转移组件的领域自适应。","authors":"Mingming Gong,&nbsp;Kun Zhang,&nbsp;Tongliang Liu,&nbsp;Dacheng Tao,&nbsp;Clark Glymour,&nbsp;Bernhard Schölkopf","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Domain adaptation arises in supervised learning when the training (source domain) and test (target domain) data have different distributions. Let <i>X</i> and <i>Y</i> denote the features and target, respectively, previous work on domain adaptation mainly considers the covariate shift situation where the distribution of the features <i>P</i>(<i>X</i>) changes across domains while the conditional distribution <i>P</i>(<i>Y</i>∣<i>X</i>) stays the same. To reduce domain discrepancy, recent methods try to find invariant components [Formula: see text] that have similar [Formula: see text] on different domains by explicitly minimizing a distribution discrepancy measure. However, it is not clear if [Formula: see text] in different domains is also similar when <i>P</i>(<i>Y</i>∣<i>X</i>) changes. Furthermore, transferable components do not necessarily have to be invariant. If the change in some components is identifiable, we can make use of such components for prediction in the target domain. In this paper, we focus on the case where <i>P</i>(<i>X</i>∣<i>Y</i>) and <i>P</i>(<i>Y</i>) both change in a causal system in which <i>Y</i> is the cause for <i>X</i>. Under appropriate assumptions, we aim to extract conditional transferable components whose conditional distribution [Formula: see text] is invariant after proper location-scale (LS) transformations, and identify how <i>P</i>(<i>Y</i>) changes between domains simultaneously. We provide theoretical analysis and empirical evaluation on both synthetic and real-world data to show the effectiveness of our method.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"48 ","pages":"2839-2848"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321138/pdf/nihms-846268.pdf","citationCount":"0","resultStr":"{\"title\":\"Domain Adaptation with Conditional Transferable Components.\",\"authors\":\"Mingming Gong,&nbsp;Kun Zhang,&nbsp;Tongliang Liu,&nbsp;Dacheng Tao,&nbsp;Clark Glymour,&nbsp;Bernhard Schölkopf\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Domain adaptation arises in supervised learning when the training (source domain) and test (target domain) data have different distributions. Let <i>X</i> and <i>Y</i> denote the features and target, respectively, previous work on domain adaptation mainly considers the covariate shift situation where the distribution of the features <i>P</i>(<i>X</i>) changes across domains while the conditional distribution <i>P</i>(<i>Y</i>∣<i>X</i>) stays the same. To reduce domain discrepancy, recent methods try to find invariant components [Formula: see text] that have similar [Formula: see text] on different domains by explicitly minimizing a distribution discrepancy measure. However, it is not clear if [Formula: see text] in different domains is also similar when <i>P</i>(<i>Y</i>∣<i>X</i>) changes. Furthermore, transferable components do not necessarily have to be invariant. If the change in some components is identifiable, we can make use of such components for prediction in the target domain. In this paper, we focus on the case where <i>P</i>(<i>X</i>∣<i>Y</i>) and <i>P</i>(<i>Y</i>) both change in a causal system in which <i>Y</i> is the cause for <i>X</i>. Under appropriate assumptions, we aim to extract conditional transferable components whose conditional distribution [Formula: see text] is invariant after proper location-scale (LS) transformations, and identify how <i>P</i>(<i>Y</i>) changes between domains simultaneously. We provide theoretical analysis and empirical evaluation on both synthetic and real-world data to show the effectiveness of our method.</p>\",\"PeriodicalId\":89793,\"journal\":{\"name\":\"JMLR workshop and conference proceedings\",\"volume\":\"48 \",\"pages\":\"2839-2848\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5321138/pdf/nihms-846268.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMLR workshop and conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在监督学习中,当训练数据(源域)和测试数据(目标域)具有不同的分布时,就会产生领域自适应。设X和Y分别表示特征和目标,以往关于域自适应的工作主要考虑协变量移位情况,即特征P(X)的分布跨域变化,而条件分布P(Y∣X)保持不变。为了减少域差异,最近的方法试图通过显式地最小化分布差异度量来找到在不同域中具有相似的不变分量[公式:见文本]。然而,尚不清楚当P(Y∣X)变化时,不同领域中的[公式:见文本]是否也相似。此外,可转移的组件不一定是不变的。如果某些组件的变化是可识别的,我们可以利用这些组件在目标域中进行预测。在本文中,我们重点研究了P(X∣Y)和P(Y)在一个因果系统中同时变化的情况,其中Y是X的原因。在适当的假设下,我们旨在提取条件分布[公式:见文本]经过适当的位置尺度(LS)变换后不变的条件可转移分量,并确定P(Y)如何在域之间同时变化。我们对合成数据和实际数据进行了理论分析和实证评估,以证明我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Domain Adaptation with Conditional Transferable Components.

Domain adaptation arises in supervised learning when the training (source domain) and test (target domain) data have different distributions. Let X and Y denote the features and target, respectively, previous work on domain adaptation mainly considers the covariate shift situation where the distribution of the features P(X) changes across domains while the conditional distribution P(YX) stays the same. To reduce domain discrepancy, recent methods try to find invariant components [Formula: see text] that have similar [Formula: see text] on different domains by explicitly minimizing a distribution discrepancy measure. However, it is not clear if [Formula: see text] in different domains is also similar when P(YX) changes. Furthermore, transferable components do not necessarily have to be invariant. If the change in some components is identifiable, we can make use of such components for prediction in the target domain. In this paper, we focus on the case where P(XY) and P(Y) both change in a causal system in which Y is the cause for X. Under appropriate assumptions, we aim to extract conditional transferable components whose conditional distribution [Formula: see text] is invariant after proper location-scale (LS) transformations, and identify how P(Y) changes between domains simultaneously. We provide theoretical analysis and empirical evaluation on both synthetic and real-world data to show the effectiveness of our method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition. Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain. A Hybrid Causal Search Algorithm for Latent Variable Models. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. Uncovering Voice Misuse Using Symbolic Mismatch.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1