稀疏线性模型和应用的预算实验设计

Sathya N Ravi, Vamsi K Ithapu, Sterling C Johnson, Vikas Singh
{"title":"稀疏线性模型和应用的预算实验设计","authors":"Sathya N Ravi, Vamsi K Ithapu, Sterling C Johnson, Vikas Singh","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Budget constrained optimal design of experiments is a well studied problem. Although the literature is very mature, not many strategies are available when these design problems appear in the context of sparse linear models commonly encountered in high dimensional machine learning. In this work, we study this budget constrained design where the underlying regression model involves a <i>ℓ</i><sub>1</sub>-regularized linear function. We propose two novel strategies: the first is motivated geometrically whereas the second is algebraic in nature. We obtain tractable algorithms for this problem which also hold for a more general class of sparse linear models. We perform a detailed set of experiments, on benchmarks and a large neuroimaging study, showing that the proposed models are effective in practice. The latter experiment suggests that these ideas may play a small role in informing enrollment strategies for similar scientific studies in the future.</p>","PeriodicalId":89793,"journal":{"name":"JMLR workshop and conference proceedings","volume":"48 ","pages":"583-592"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415092/pdf/nihms855967.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental Design on a Budget for Sparse Linear Models and Applications.\",\"authors\":\"Sathya N Ravi, Vamsi K Ithapu, Sterling C Johnson, Vikas Singh\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Budget constrained optimal design of experiments is a well studied problem. Although the literature is very mature, not many strategies are available when these design problems appear in the context of sparse linear models commonly encountered in high dimensional machine learning. In this work, we study this budget constrained design where the underlying regression model involves a <i>ℓ</i><sub>1</sub>-regularized linear function. We propose two novel strategies: the first is motivated geometrically whereas the second is algebraic in nature. We obtain tractable algorithms for this problem which also hold for a more general class of sparse linear models. We perform a detailed set of experiments, on benchmarks and a large neuroimaging study, showing that the proposed models are effective in practice. The latter experiment suggests that these ideas may play a small role in informing enrollment strategies for similar scientific studies in the future.</p>\",\"PeriodicalId\":89793,\"journal\":{\"name\":\"JMLR workshop and conference proceedings\",\"volume\":\"48 \",\"pages\":\"583-592\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5415092/pdf/nihms855967.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMLR workshop and conference proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMLR workshop and conference proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预算受限的实验优化设计是一个经过深入研究的问题。虽然相关文献已经非常成熟,但当这些设计问题出现在高维机器学习中常见的稀疏线性模型背景下时,可用的策略并不多。在这项工作中,我们研究了底层回归模型涉及 ℓ1-regularized 线性函数时的预算受限设计。我们提出了两种新颖的策略:第一种从几何角度出发,而第二种从代数角度出发。我们获得了解决这个问题的可行算法,这些算法也适用于更一般的稀疏线性模型。我们在基准和大型神经成像研究中进行了一系列详细的实验,结果表明所提出的模型在实践中是有效的。后一项实验表明,这些想法可能会在未来类似科学研究的招生策略中发挥微小的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Design on a Budget for Sparse Linear Models and Applications.

Budget constrained optimal design of experiments is a well studied problem. Although the literature is very mature, not many strategies are available when these design problems appear in the context of sparse linear models commonly encountered in high dimensional machine learning. In this work, we study this budget constrained design where the underlying regression model involves a 1-regularized linear function. We propose two novel strategies: the first is motivated geometrically whereas the second is algebraic in nature. We obtain tractable algorithms for this problem which also hold for a more general class of sparse linear models. We perform a detailed set of experiments, on benchmarks and a large neuroimaging study, showing that the proposed models are effective in practice. The latter experiment suggests that these ideas may play a small role in informing enrollment strategies for similar scientific studies in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition. Greedy Direction Method of Multiplier for MAP Inference of Large Output Domain. A Hybrid Causal Search Algorithm for Latent Variable Models. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks. Uncovering Voice Misuse Using Symbolic Mismatch.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1