颅内动脉瘤的虚拟血管内治疗:模型和不确定性。

IF 7.9 Q1 Medicine Wiley Interdisciplinary Reviews-Systems Biology and Medicine Pub Date : 2017-07-01 Epub Date: 2017-05-10 DOI:10.1002/wsbm.1385
Ali Sarrami-Foroushani, Toni Lassila, Alejandro F Frangi
{"title":"颅内动脉瘤的虚拟血管内治疗:模型和不确定性。","authors":"Ali Sarrami-Foroushani,&nbsp;Toni Lassila,&nbsp;Alejandro F Frangi","doi":"10.1002/wsbm.1385","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual endovascular treatment models (VETMs) have been developed with the view to aid interventional neuroradiologists and neurosurgeons to pre-operatively analyze the comparative efficacy and safety of endovascular treatments for intracranial aneurysms. Based on the current state of VETMs in aneurysm rupture risk stratification and in patient-specific prediction of treatment outcomes, we argue there is a need to go beyond personalized biomechanical flow modeling assuming deterministic parameters and error-free measurements. The mechanobiological effects associated with blood clot formation are important factors in therapeutic decision making and models of post-treatment intra-aneurysmal biology and biochemistry should be linked to the purely hemodynamic models to improve the predictive power of current VETMs. The influence of model and parameter uncertainties associated to each component of a VETM is, where feasible, quantified via a random-effects meta-analysis of the literature. This allows estimating the pooled effect size of these uncertainties on aneurysmal wall shear stress. From such meta-analyses, two main sources of uncertainty emerge where research efforts have so far been limited: (1) vascular wall distensibility, and (2) intra/intersubject systemic flow variations. In the future, we suggest that current deterministic computational simulations need to be extended with strategies for uncertainty mitigation, uncertainty exploration, and sensitivity reduction techniques. WIREs Syst Biol Med 2017, 9:e1385. doi: 10.1002/wsbm.1385 For further resources related to this article, please visit the WIREs website.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"9 4","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1385","citationCount":"13","resultStr":"{\"title\":\"Virtual endovascular treatment of intracranial aneurysms: models and uncertainty.\",\"authors\":\"Ali Sarrami-Foroushani,&nbsp;Toni Lassila,&nbsp;Alejandro F Frangi\",\"doi\":\"10.1002/wsbm.1385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Virtual endovascular treatment models (VETMs) have been developed with the view to aid interventional neuroradiologists and neurosurgeons to pre-operatively analyze the comparative efficacy and safety of endovascular treatments for intracranial aneurysms. Based on the current state of VETMs in aneurysm rupture risk stratification and in patient-specific prediction of treatment outcomes, we argue there is a need to go beyond personalized biomechanical flow modeling assuming deterministic parameters and error-free measurements. The mechanobiological effects associated with blood clot formation are important factors in therapeutic decision making and models of post-treatment intra-aneurysmal biology and biochemistry should be linked to the purely hemodynamic models to improve the predictive power of current VETMs. The influence of model and parameter uncertainties associated to each component of a VETM is, where feasible, quantified via a random-effects meta-analysis of the literature. This allows estimating the pooled effect size of these uncertainties on aneurysmal wall shear stress. From such meta-analyses, two main sources of uncertainty emerge where research efforts have so far been limited: (1) vascular wall distensibility, and (2) intra/intersubject systemic flow variations. In the future, we suggest that current deterministic computational simulations need to be extended with strategies for uncertainty mitigation, uncertainty exploration, and sensitivity reduction techniques. WIREs Syst Biol Med 2017, 9:e1385. doi: 10.1002/wsbm.1385 For further resources related to this article, please visit the WIREs website.</p>\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":\"9 4\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wsbm.1385\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/5/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/5/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 13

摘要

虚拟血管内治疗模型(Virtual endovascular treatment models, VETMs)的发展旨在帮助介入神经放射学家和神经外科医生术前分析颅内动脉瘤血管内治疗的比较疗效和安全性。基于vetm在动脉瘤破裂风险分层和患者特异性治疗结果预测中的现状,我们认为有必要超越个性化的生物力学流模型,假设确定的参数和无误差的测量。与血凝块形成相关的机械生物学效应是治疗决策的重要因素,治疗后动脉瘤内生物学和生物化学模型应与纯血流动力学模型相结合,以提高当前VETMs的预测能力。在可行的情况下,通过文献的随机效应荟萃分析,对与VETM的每个组成部分相关的模型和参数不确定性的影响进行量化。这允许估计这些不确定性对动脉瘤壁剪切应力的综合效应大小。从这些荟萃分析中,研究工作迄今为止受到限制的两个主要不确定性来源:(1)血管壁的扩张性,(2)主体内/主体间的全身血流变化。在未来,我们建议当前的确定性计算模拟需要扩展为不确定性缓解、不确定性探索和灵敏度降低技术的策略。中国生物医学工程学报,2017,29(4):344 - 344。doi: 10.1002 / wsbm.1385有关与本文相关的更多资源,请访问WIREs网站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual endovascular treatment of intracranial aneurysms: models and uncertainty.

Virtual endovascular treatment models (VETMs) have been developed with the view to aid interventional neuroradiologists and neurosurgeons to pre-operatively analyze the comparative efficacy and safety of endovascular treatments for intracranial aneurysms. Based on the current state of VETMs in aneurysm rupture risk stratification and in patient-specific prediction of treatment outcomes, we argue there is a need to go beyond personalized biomechanical flow modeling assuming deterministic parameters and error-free measurements. The mechanobiological effects associated with blood clot formation are important factors in therapeutic decision making and models of post-treatment intra-aneurysmal biology and biochemistry should be linked to the purely hemodynamic models to improve the predictive power of current VETMs. The influence of model and parameter uncertainties associated to each component of a VETM is, where feasible, quantified via a random-effects meta-analysis of the literature. This allows estimating the pooled effect size of these uncertainties on aneurysmal wall shear stress. From such meta-analyses, two main sources of uncertainty emerge where research efforts have so far been limited: (1) vascular wall distensibility, and (2) intra/intersubject systemic flow variations. In the future, we suggest that current deterministic computational simulations need to be extended with strategies for uncertainty mitigation, uncertainty exploration, and sensitivity reduction techniques. WIREs Syst Biol Med 2017, 9:e1385. doi: 10.1002/wsbm.1385 For further resources related to this article, please visit the WIREs website.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
期刊最新文献
Tools for computational analysis of moving boundary problems in cellular mechanobiology. Cellular reprogramming: Mathematics meets medicine. Thermoregulation: A journey from physiology to computational models and the intensive care unit. Mammalian cell and tissue imaging using Raman and coherent Raman microscopy. Computational models to explore the complexity of the epithelial to mesenchymal transition in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1