基于任务-动作熵最小化的连续状态和动作空间主动感知。

Tipakorn Greigarn, M Cenk Çavuşoğlu
{"title":"基于任务-动作熵最小化的连续状态和动作空间主动感知。","authors":"Tipakorn Greigarn,&nbsp;M Cenk Çavuşoğlu","doi":"10.1109/IROS.2016.7759688","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a new task-oriented active-sensing method is presented. Most active sensing methods choose sensing actions that minimize the uncertainty of the state according to some information-theoretic measure. While this is reasonable for most applications, minimizing state uncertainty may not be most relevant when the state information is used to perform a task. This is because the uncertainty in some subspace of the state space could have more impact on the performance of the task than the others at a given time. The active-sensing method presented in this paper takes the task into account when selecting sensing actions by minimizing the uncertainty in future task action.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2016 ","pages":"4678-4684"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/IROS.2016.7759688","citationCount":"1","resultStr":"{\"title\":\"Active Sensing for Continuous State and Action Spaces via Task-Action Entropy Minimization.\",\"authors\":\"Tipakorn Greigarn,&nbsp;M Cenk Çavuşoğlu\",\"doi\":\"10.1109/IROS.2016.7759688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, a new task-oriented active-sensing method is presented. Most active sensing methods choose sensing actions that minimize the uncertainty of the state according to some information-theoretic measure. While this is reasonable for most applications, minimizing state uncertainty may not be most relevant when the state information is used to perform a task. This is because the uncertainty in some subspace of the state space could have more impact on the performance of the task than the others at a given time. The active-sensing method presented in this paper takes the task into account when selecting sensing actions by minimizing the uncertainty in future task action.</p>\",\"PeriodicalId\":74523,\"journal\":{\"name\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"volume\":\"2016 \",\"pages\":\"4678-4684\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/IROS.2016.7759688\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/12/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的面向任务的主动感知方法。大多数主动感知方法都是根据一定的信息论度量来选择使状态不确定性最小化的感知行为。虽然这对大多数应用程序来说是合理的,但是当使用状态信息执行任务时,最小化状态不确定性可能不是最相关的。这是因为在给定时间,状态空间的某些子空间中的不确定性可能比其他子空间对任务性能的影响更大。本文提出的主动感知方法在选择感知动作时考虑到任务本身,使未来任务动作的不确定性最小化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Active Sensing for Continuous State and Action Spaces via Task-Action Entropy Minimization.

In this paper, a new task-oriented active-sensing method is presented. Most active sensing methods choose sensing actions that minimize the uncertainty of the state according to some information-theoretic measure. While this is reasonable for most applications, minimizing state uncertainty may not be most relevant when the state information is used to perform a task. This is because the uncertainty in some subspace of the state space could have more impact on the performance of the task than the others at a given time. The active-sensing method presented in this paper takes the task into account when selecting sensing actions by minimizing the uncertainty in future task action.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FBG-based Shape-Sensing to Enable Lateral Deflection Methods of Autonomous Needle Insertion. An Energetic Approach to Task-Invariant Ankle Exoskeleton Control. Controlling Powered Prosthesis Kinematics over Continuous Transitions Between Walk and Stair Ascent. Effects of Personalization on Gait-State Tracking Performance Using Extended Kalman Filters. Improving Amputee Endurance over Activities of Daily Living with a Robotic Knee-Ankle Prosthesis: A Case Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1