视觉中的丘脑皮质处理。

IF 1.1 4区 医学 Q4 NEUROSCIENCES Visual Neuroscience Pub Date : 2017-01-01 DOI:10.1017/S0952523817000049
Reece Mazade, Jose Manuel Alonso
{"title":"视觉中的丘脑皮质处理。","authors":"Reece Mazade,&nbsp;Jose Manuel Alonso","doi":"10.1017/S0952523817000049","DOIUrl":null,"url":null,"abstract":"<p><p>Visual information reaches the cerebral cortex through a major thalamocortical pathway that connects the lateral geniculate nucleus (LGN) of the thalamus with the primary visual area of the cortex (area V1). In humans, ∼3.4 million afferents from the LGN are distributed within a V1 surface of ∼2400 mm2, an afferent number that is reduced by half in the macaque and by more than two orders of magnitude in the mouse. Thalamocortical afferents are sorted in visual cortex based on the spatial position of their receptive fields to form a map of visual space. The visual resolution within this map is strongly correlated with total number of thalamic afferents that V1 receives and the area available to sort them. The ∼20,000 afferents of the mouse are only sorted by spatial position because they have to cover a large visual field (∼300 deg) within just 4 mm2 of V1 area. By contrast, the ∼500,000 afferents of the cat are also sorted by eye input and light/dark polarity because they cover a smaller visual field (∼200 deg) within a much larger V1 area (∼400 mm2), a sorting principle that is likely to apply also to macaques and humans. The increased precision of thalamic sorting allows building multiple copies of the V1 visual map for left/right eyes and light/dark polarities, which become interlaced to keep neurons representing the same visual point close together. In turn, this interlaced arrangement makes cortical neurons with different preferences for stimulus orientation to rotate around single cortical points forming a pinwheel pattern that allows more efficient processing of objects and visual textures.</p>","PeriodicalId":23556,"journal":{"name":"Visual Neuroscience","volume":"34 ","pages":"E007"},"PeriodicalIF":1.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0952523817000049","citationCount":"26","resultStr":"{\"title\":\"Thalamocortical processing in vision.\",\"authors\":\"Reece Mazade,&nbsp;Jose Manuel Alonso\",\"doi\":\"10.1017/S0952523817000049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visual information reaches the cerebral cortex through a major thalamocortical pathway that connects the lateral geniculate nucleus (LGN) of the thalamus with the primary visual area of the cortex (area V1). In humans, ∼3.4 million afferents from the LGN are distributed within a V1 surface of ∼2400 mm2, an afferent number that is reduced by half in the macaque and by more than two orders of magnitude in the mouse. Thalamocortical afferents are sorted in visual cortex based on the spatial position of their receptive fields to form a map of visual space. The visual resolution within this map is strongly correlated with total number of thalamic afferents that V1 receives and the area available to sort them. The ∼20,000 afferents of the mouse are only sorted by spatial position because they have to cover a large visual field (∼300 deg) within just 4 mm2 of V1 area. By contrast, the ∼500,000 afferents of the cat are also sorted by eye input and light/dark polarity because they cover a smaller visual field (∼200 deg) within a much larger V1 area (∼400 mm2), a sorting principle that is likely to apply also to macaques and humans. The increased precision of thalamic sorting allows building multiple copies of the V1 visual map for left/right eyes and light/dark polarities, which become interlaced to keep neurons representing the same visual point close together. In turn, this interlaced arrangement makes cortical neurons with different preferences for stimulus orientation to rotate around single cortical points forming a pinwheel pattern that allows more efficient processing of objects and visual textures.</p>\",\"PeriodicalId\":23556,\"journal\":{\"name\":\"Visual Neuroscience\",\"volume\":\"34 \",\"pages\":\"E007\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0952523817000049\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0952523817000049\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0952523817000049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 26

摘要

视觉信息通过连接丘脑外侧膝状核(LGN)和皮层初级视觉区(V1区)的主要丘脑皮质通路到达大脑皮层。在人类中,来自LGN的约340万个传入信号分布在约2400 mm2的V1表面内,猕猴的传入信号数量减少了一半,小鼠的传入信号数量减少了两个数量级以上。丘脑皮层传入事件在视觉皮层中根据其感受野的空间位置进行分类,形成视觉空间图。这张图中的视觉分辨率与V1接收到的丘脑传入事件总数和可用于分类它们的区域密切相关。小鼠的~ 20,000个传入事件仅按空间位置进行分类,因为它们必须在V1区域的4mm2内覆盖大的视野(~ 300度)。相比之下,猫的~ 500000个传入事件也根据眼睛输入和光/暗极性进行分类,因为它们在更大的V1区域(~ 400 mm2)内覆盖较小的视野(~ 200度),这一分类原则可能也适用于猕猴和人类。丘脑分选精度的提高使得左/右眼和光/暗极性的V1视觉地图可以建立多个副本,它们相互交错,以保持代表同一视觉点的神经元紧密相连。反过来,这种交错的排列使得对刺激方向有不同偏好的皮层神经元围绕单个皮质点旋转,形成一个风车图案,可以更有效地处理物体和视觉纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thalamocortical processing in vision.

Visual information reaches the cerebral cortex through a major thalamocortical pathway that connects the lateral geniculate nucleus (LGN) of the thalamus with the primary visual area of the cortex (area V1). In humans, ∼3.4 million afferents from the LGN are distributed within a V1 surface of ∼2400 mm2, an afferent number that is reduced by half in the macaque and by more than two orders of magnitude in the mouse. Thalamocortical afferents are sorted in visual cortex based on the spatial position of their receptive fields to form a map of visual space. The visual resolution within this map is strongly correlated with total number of thalamic afferents that V1 receives and the area available to sort them. The ∼20,000 afferents of the mouse are only sorted by spatial position because they have to cover a large visual field (∼300 deg) within just 4 mm2 of V1 area. By contrast, the ∼500,000 afferents of the cat are also sorted by eye input and light/dark polarity because they cover a smaller visual field (∼200 deg) within a much larger V1 area (∼400 mm2), a sorting principle that is likely to apply also to macaques and humans. The increased precision of thalamic sorting allows building multiple copies of the V1 visual map for left/right eyes and light/dark polarities, which become interlaced to keep neurons representing the same visual point close together. In turn, this interlaced arrangement makes cortical neurons with different preferences for stimulus orientation to rotate around single cortical points forming a pinwheel pattern that allows more efficient processing of objects and visual textures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Neuroscience
Visual Neuroscience 医学-神经科学
CiteScore
2.20
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Visual Neuroscience is an international journal devoted to the publication of experimental and theoretical research on biological mechanisms of vision. A major goal of publication is to bring together in one journal a broad range of studies that reflect the diversity and originality of all aspects of neuroscience research relating to the visual system. Contributions may address molecular, cellular or systems-level processes in either vertebrate or invertebrate species. The journal publishes work based on a wide range of technical approaches, including molecular genetics, anatomy, physiology, psychophysics and imaging, and utilizing comparative, developmental, theoretical or computational approaches to understand the biology of vision and visuo-motor control. The journal also publishes research seeking to understand disorders of the visual system and strategies for restoring vision. Studies based exclusively on clinical, psychophysiological or behavioral data are welcomed, provided that they address questions concerning neural mechanisms of vision or provide insight into visual dysfunction.
期刊最新文献
Support for the efficient coding account of visual discomfort. Visual Field Asymmetries in Responses to ON and OFF Pathway Biasing Stimuli. Pattern reversal chromatic VEPs like onsets, are unaffected by attentional demand. The interaction between luminance polarity grouping and symmetry axes on the ERP responses to symmetry. Electroretinographic responses to periodic stimuli in primates and the relevance for visual perception and for clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1