{"title":"癌症中的代谢相互作用:微环境、癌细胞表型和表观遗传景观之间的细胞代谢界面。","authors":"Gianmarco Rinaldi, Matteo Rossi, Sarah-Maria Fendt","doi":"10.1002/wsbm.1397","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolism is tied into complex interactions with cell intrinsic and extrinsic processes that go beyond the conversion of nutrients into energy and biomass. Indeed, metabolism is a central cellular hub that interconnects and influences the microenvironment, the cellular phenotype, cell signaling, and the (epi)genetic landscape. While these interactions evolved to support survival and function of normal cells, they are hijacked by cancer cells to enable cancer maintenance and progression. Thus, a mechanistic and functional understanding of complex metabolic interactions provides a basis for the discovery of novel metabolic vulnerabilities in cancer. In this review, we will summarize and provide context for the to-date discovered complex metabolic interactions by discussing how the microenvironment as well as the cellular phenotype define cancer metabolism, and how metabolism shapes the epigenetic state of cancer cells. Many of the studies investigating the crosstalk of metabolism with cell intrinsic and extrinsic processes have used integrative data analysis approaches at the interface between computational and experimental cancer research, and we will highlight those throughout the review. In conclusion, identifying and understanding complex metabolic interactions is a basis for deciphering novel metabolic vulnerabilities of cancer cells. WIREs Syst Biol Med 2018, 10:e1397. doi: 10.1002/wsbm.1397 This article is categorized under: Biological Mechanisms > Metabolism Physiology > Mammalian Physiology in Health and Disease.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1397","citationCount":"50","resultStr":"{\"title\":\"Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape.\",\"authors\":\"Gianmarco Rinaldi, Matteo Rossi, Sarah-Maria Fendt\",\"doi\":\"10.1002/wsbm.1397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolism is tied into complex interactions with cell intrinsic and extrinsic processes that go beyond the conversion of nutrients into energy and biomass. Indeed, metabolism is a central cellular hub that interconnects and influences the microenvironment, the cellular phenotype, cell signaling, and the (epi)genetic landscape. While these interactions evolved to support survival and function of normal cells, they are hijacked by cancer cells to enable cancer maintenance and progression. Thus, a mechanistic and functional understanding of complex metabolic interactions provides a basis for the discovery of novel metabolic vulnerabilities in cancer. In this review, we will summarize and provide context for the to-date discovered complex metabolic interactions by discussing how the microenvironment as well as the cellular phenotype define cancer metabolism, and how metabolism shapes the epigenetic state of cancer cells. Many of the studies investigating the crosstalk of metabolism with cell intrinsic and extrinsic processes have used integrative data analysis approaches at the interface between computational and experimental cancer research, and we will highlight those throughout the review. In conclusion, identifying and understanding complex metabolic interactions is a basis for deciphering novel metabolic vulnerabilities of cancer cells. WIREs Syst Biol Med 2018, 10:e1397. doi: 10.1002/wsbm.1397 This article is categorized under: Biological Mechanisms > Metabolism Physiology > Mammalian Physiology in Health and Disease.</p>\",\"PeriodicalId\":49254,\"journal\":{\"name\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/wsbm.1397\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley Interdisciplinary Reviews-Systems Biology and Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wsbm.1397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2017/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2017/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape.
Metabolism is tied into complex interactions with cell intrinsic and extrinsic processes that go beyond the conversion of nutrients into energy and biomass. Indeed, metabolism is a central cellular hub that interconnects and influences the microenvironment, the cellular phenotype, cell signaling, and the (epi)genetic landscape. While these interactions evolved to support survival and function of normal cells, they are hijacked by cancer cells to enable cancer maintenance and progression. Thus, a mechanistic and functional understanding of complex metabolic interactions provides a basis for the discovery of novel metabolic vulnerabilities in cancer. In this review, we will summarize and provide context for the to-date discovered complex metabolic interactions by discussing how the microenvironment as well as the cellular phenotype define cancer metabolism, and how metabolism shapes the epigenetic state of cancer cells. Many of the studies investigating the crosstalk of metabolism with cell intrinsic and extrinsic processes have used integrative data analysis approaches at the interface between computational and experimental cancer research, and we will highlight those throughout the review. In conclusion, identifying and understanding complex metabolic interactions is a basis for deciphering novel metabolic vulnerabilities of cancer cells. WIREs Syst Biol Med 2018, 10:e1397. doi: 10.1002/wsbm.1397 This article is categorized under: Biological Mechanisms > Metabolism Physiology > Mammalian Physiology in Health and Disease.
期刊介绍:
Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine
Focus:
Strong interdisciplinary focus
Serves as an encyclopedic reference for systems biology research
Conceptual Framework:
Systems biology asserts the study of organisms as hierarchical systems or networks
Individual biological components interact in complex ways within these systems
Article Coverage:
Discusses biology, methods, and models
Spans systems from a few molecules to whole species
Topical Coverage:
Developmental Biology
Physiology
Biological Mechanisms
Models of Systems, Properties, and Processes
Laboratory Methods and Technologies
Translational, Genomic, and Systems Medicine